Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

University of Massachusetts Amherst

Discipline
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 126

Full-Text Articles in Physical Sciences and Mathematics

Film Stabilizaiton And Photophysics Of Unconventional Conjugated Polymers, Kara Martin Nov 2018

Film Stabilizaiton And Photophysics Of Unconventional Conjugated Polymers, Kara Martin

Doctoral Dissertations

Conjugated polymers offer a unique opportunity to develop high performing, flexible, lightweight, and large area electronic devices. With advances in conjugated polymer understanding and synthesis, the use of polymers as active layer materials in electronic applications, rather than just substrate materials, has become more promising. However, defects in morphological stability, as well as imperfect electronic understanding, are still present, limiting the use of these materials in commercializable electronics. Fundamental understanding of structure-property relationships can allow for facile synthetic solutions to major drawbacks of conjugated polymer integration in standard device architectures. Chapter 1 presents background research on the history of conjugated …


Quantile Regression For Survival Data With Delayed Entry, Boqin Sun Nov 2018

Quantile Regression For Survival Data With Delayed Entry, Boqin Sun

Doctoral Dissertations

Delayed entry arises frequently in follow-up studies for survival outcomes, where additional study subjects enter during the study period. We propose a quantile regression model to analyze survival data subject to delayed entry and right-censoring. Such a model offers flexibility in assessing covariate effects on survival outcome and the regression coefficients are interpretable as direct effects on the event time. Under the conditional independent censoring assumption, we proposed a weighted martingale-based estimating equation, and formulated the solution finding as a $\ell_1$-type convex optimization problem, which was solved through a linear programming algorithm. We established uniform consistency and weak convergence of …


Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li Nov 2018

Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li

Doctoral Dissertations

In the past decades, the computing capability has shown an exponential growth trend, which is observed as Moore’s law. However, this growth speed is slowing down in recent years mostly because the down-scaled size of transistors is approaching their physical limit. On the other hand, recent advances in software, especially in big data analysis and artificial intelligence, call for a break-through in computing hardware. The memristor, or the resistive switching device, is believed to be a potential building block of the future generation of integrated circuits. The underlying mechanism of this device is different from that of complementary metal-oxide-semiconductor (CMOS) …


Probing Galaxy Evolution Through Deep Radio Continuum Observations, Hansung Gim Nov 2018

Probing Galaxy Evolution Through Deep Radio Continuum Observations, Hansung Gim

Doctoral Dissertations

One of the most important questions in modern astrophysics is how galaxies form and evolve. There are numerous processes involved in galaxy evolution, but the stellar mass buildup and supermassive black hole growth are two main drivers in galaxy evolution. Those activities are heavily obscured by dust, so we need another tracer without dust attenuation: low-frequency radio continuum observation. We understand the galaxy evolution through the deep radio continuum observations on the Great Observatories Origins Deep Survey (GOODS)-North, -South, and the COSMOS HI Large Extragalactic Survey (CHILES) fields. Exploiting the multi-wavelength dataset, we define the radio populations such as star-formation …


Investigating The Role Of Topological Frustration On Morphology Of Novel Multiblock Copolymers, Rohit Gupta Nov 2018

Investigating The Role Of Topological Frustration On Morphology Of Novel Multiblock Copolymers, Rohit Gupta

Doctoral Dissertations

Multiblock copolymers have gained considerable attention due to their ability to offer immense potential for designing soft materials with complex architectures for diverse applications. The enlarged parameter space offered by these multiblock copolymers gives access to a wide variety of multiply continuous morphologies which can be used to produce highly ordered nanostructures. The investigation on multiblock copolymers has been subjected to two critical limitations: (i) A suitable synthetic strategy for accessing these structures and (ii) computational tools which can help in application driven design of these molecules. In this dissertation, the goal was to develop methodologies for the synthesis of …


Variational Approximations For Density Deconvolution, Yue Chang Nov 2018

Variational Approximations For Density Deconvolution, Yue Chang

Doctoral Dissertations

This thesis considers the problem of density estimation when the variables of interest are subject to measurement error. The measurement error is assumed to be additive and homoscedastic. We specify the density of interest by a Dirichlet Process Mixture Model and establish variational approximation approaches to the density deconvolution problem. Gaussian and Laplacian error distributions are considered, which are representatives of supersmooth and ordinary smooth distributions, respectively. We develop two variational approximation algorithms for Gaussian error deconvolution and one variational approximation algorithm for Laplacian error deconvolution. Their performances are compared to deconvoluting kernels and Monte Carlo Markov Chain method by …


Impact Of Chemical Doping On The Thermoelectric Charge Transport Of Organic Semiconductors, Connor J. Boyle Nov 2018

Impact Of Chemical Doping On The Thermoelectric Charge Transport Of Organic Semiconductors, Connor J. Boyle

Doctoral Dissertations

The thermoelectric properties of organic semiconductors allow them to directly convert heat into electricity without the use of moving parts and to directly convert electricity into heat without the use of working fluids. These properties offer opportunities for the generation of electricity from non-conventional or renewable sources of heat and for refrigeration without the risk of leaking harmful working fluids at any length scale down to the nanoscale. Since organic materials are lightweight, flexible, and made from abundant resources, these opportunities could one day become affordable for widespread use and could be expanded to include specialized and otherwise difficult to …


Voltage-Driven Polyelectrolyte Complexation Inside A Nanopore, Prabhat Tripathi Oct 2018

Voltage-Driven Polyelectrolyte Complexation Inside A Nanopore, Prabhat Tripathi

Doctoral Dissertations

This thesis investigates how a pair of oppositely charged macromolecules can be driven by an electric field to form a polyelectrolyte complex inside a nanopore. To observe and isolate an individual complex pair, a model protein nanopore, embedded in artificial phospholipid membrane, allowing compartmentalization (cis/trans) is employed. A polyanion in the cis and a polycation in the trans compartments are subjected to electrophoretic capture by the pore. We find that the measured ionic current across the pore has a distinguishable signature of complex formation, which is different from the signature of the passage of individual molecules …


Righting Web Development, John Vilk Oct 2018

Righting Web Development, John Vilk

Doctoral Dissertations

The web browser is the most important application runtime today, encompassing all types of applications on practically every Internet-connected device. Browsers power complete office suites, media players, games, and augmented and virtual reality experiences, and they integrate with cameras, microphones, GPSes, and other sensors available on computing devices. Many apparently native mobile and desktop applications are secretly hybrid apps that contain a mix of native and browser code. History has shown that when new devices, sensors, and experiences appear on the market, the browser will evolve to support them. Despite the browser's importance, developing web applications is exceedingly difficult. Web …


Data Stream Algorithms For Large Graphs And High Dimensional Data, Hoa Vu Oct 2018

Data Stream Algorithms For Large Graphs And High Dimensional Data, Hoa Vu

Doctoral Dissertations

In contrast to the traditional random access memory computational model where the entire input is available in the working memory, the data stream model only provides sequential access to the input. The data stream model is a natural framework to handle large and dynamic data. In this model, we focus on designing algorithms that use sublinear memory and a small number of passes over the stream. Other desirable properties include fast update time, query time, and post processing time. In this dissertation, we consider different problems in graph theory, combinatorial optimization, and high dimensional data processing. The first part of …


Model-Based Predictive Analytics For Additive And Smart Manufacturing, Zhuo Yang Oct 2018

Model-Based Predictive Analytics For Additive And Smart Manufacturing, Zhuo Yang

Doctoral Dissertations

Qualification and certification for additive and smart manufacturing systems can be uncertain and very costly. Using available historical data can mitigate some costs of producing and testing sample parts. However, use of such data lacks the flexibility to represent specific new problems which decreases predictive accuracy and efficiency. To address these compelling needs, in this dissertation modeling techniques are introduced that can proactively estimate results expected from additive and smart manufacturing processes swiftly and with practical levels of accuracy and reliability. More specifically, this research addresses the current challenges and limitations posed by use of available data and the high …


Quantum Phase Transitions In Disordered Boson Systems, Zhiyuan Yao Oct 2018

Quantum Phase Transitions In Disordered Boson Systems, Zhiyuan Yao

Doctoral Dissertations

In this dissertation, we study the superfluid-insulator quantum phase transition in disordered boson systems. Recently, there has been considerable controversy over the validity of the scaling relations of the superfluid--Bose-glass quantum phase transition in three dimensions. Results from experimental and numerical studies on disordered quantum magnets contradict the scaling relations and the associated conventional scaling hypothesis for the singular part of the free energy. We determine various critical exponents of the superfluid--Bose-glass quantum phase transition in three-dimensional disordered Bose-Hubbard model through extensive Monte Carlo simulations. Our numerical study shows the previous studies on disordered quantum magnets were performed outside the …


Global Well-Posedness And Scattering For The Defocusing Quintic Nonlinear Schrödinger Equation In Two Dimensions, Xueying Yu Oct 2018

Global Well-Posedness And Scattering For The Defocusing Quintic Nonlinear Schrödinger Equation In Two Dimensions, Xueying Yu

Doctoral Dissertations

In this thesis we consider the Cauchy initial value problem for the defocusing quintic nonlinear Schrödinger equation in two dimensions. We take general data in the critical homogeneous Sobolev space dot H1/2. We show that if a solution remains bounded in dot H1/2 in its maximal time interval of existence, then the time interval is infinite and the solution scatters.


Well-Posedness For The Cubic Nonlinear Schrödinger Equations On Tori, Haitian Yue Oct 2018

Well-Posedness For The Cubic Nonlinear Schrödinger Equations On Tori, Haitian Yue

Doctoral Dissertations

This thesis studies the cubic nonlinear Sch\"rodinger equation (NLS) on tori both from the deterministic and probabilistic viewpoints. In Part I of this thesis, we prove global-in-time well-posedness of the Cauchy initial value problem for the defocusing cubic NLS on 4-dimensional tori and with initial data in the energy-critical space $H^1$. Furthermore, in the focusing case we prove that if a maximal-lifespan solution of the cubic NLS \, $u: I\times\mathbb{T}^4\to \mathbb{C}$\, satisfies $\sup_{t\in I}\|u(t)\|_{\dot{H}^1(\mathbb{T}^4)}


Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou Oct 2018

Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou

Doctoral Dissertations

Hydrogels are crosslinked polymeric networks imbibed with aqueous solutions. They undertake dramatic volume changes through swelling and deswelling processes, which can be stimulated by factors like temperature, pH or different chemicals. These unique properties render hydrogels particularly interesting for shape morphing related applications. In this thesis, we focus on the swelling induced deformation of thermally responsive hydrogels with lower critical solution temperatures (LCSTs), including poly(N-isopropylacrylamide) (PNIPAm) and poly(N,N-diethylacrylamide) (PDEAm). Particularly, benzophenone containing monomers are copolymerized with NIPAm or DEAm to create photocrosslinkable temperature-responsive polymers, which allows fabrication of hydrogels with controlled shapes and crosslinking …


System Support For Managing Risk In Cloud Computing Platforms, Supreeth Shastri Oct 2018

System Support For Managing Risk In Cloud Computing Platforms, Supreeth Shastri

Doctoral Dissertations

Cloud platforms sell computing to applications for a price. However, by precisely defining and controlling the service-level characteristics of cloud servers, they expose applications to a number of implicit risks throughout the application’s lifecycle. For example, user’s request for a server may be denied, leading to rejection risk; an allocated resource may be withdrawn, resulting in revocation risk; an acquired cloud server’s price may rise relative to others, causing price risk; a cloud server’s performance may vary due to external factors, triggering valuation risk. Though these risks are implicit, the costs they bear on the applications are not. While some …


The Balance Between Dipole-Dipole Interactions And Steric Exclusion On Ordering In Cationic Polymers, Chinomso Nwosu Oct 2018

The Balance Between Dipole-Dipole Interactions And Steric Exclusion On Ordering In Cationic Polymers, Chinomso Nwosu

Doctoral Dissertations

Structure-property correlations in charged polymers is an interesting facet of polymer science. Understanding the effects of intermolecular forces on the morphologies of polymers can lead to the design of membranes with desired structures to improve properties, for example ion conductivity. In random, comb-shaped polycations, competing intermolecular forces result in two different short-range orderings. Side-chain steric repulsion results in backbone-backbone morphology characterized by periodic spacing between polymer backbones. However, dipole - dipole attraction in these polycations can facilitate the formation of ionomer cluster morphology characterized by a spacing between clustered dipoles. Although both of these short-range orderings have disparate origins, their …


Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte Oct 2018

Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte

Doctoral Dissertations

DarkSide-50 is the current phase of the DarkSide direct dark matter search program, operating underground at the Laboratori Nazionali del Gran Sasso in Italy. The detector is a dual-phase argon Time Projection Chamber (TPC), designed for direct detection of Weakly Interacting Massive Particles (WIMPs), and housed within a veto system of liquid scintillator and water Cherenkov detectors. Since switching to a target of low radioactivity argon extracted from underground sources in April 2015, the background is no longer dominated by naturally occurring 39Ar. However, alpha backgrounds from radon and its daughters remain, both from the liquid argon bulk and internal …


Leveraging Eye Structure And Motion To Build A Low-Power Wearable Gaze Tracking System, Addison Mayberry Oct 2018

Leveraging Eye Structure And Motion To Build A Low-Power Wearable Gaze Tracking System, Addison Mayberry

Doctoral Dissertations

Clinical studies have shown that features of a person's eyes can function as an effective proxy for cognitive state and neurological function. Technological advances in recent decades have allowed us to deepen this understanding and discover that the actions of the eyes are in fact very tightly coupled to the operation of the brain. Researchers have used camera-based eye monitoring technology to exploit this connection and analyze mental state across across many different metrics of interest. These range from simple things like attention and scene processing, to impairments such as a fatigue or substance use, and even significant mental disorders …


Collider Tests Of Fundamental Symmetries And Neutrino Properties, Haolin Li Oct 2018

Collider Tests Of Fundamental Symmetries And Neutrino Properties, Haolin Li

Doctoral Dissertations

The CP parity of the Higgs boson and the details of the electroweak symmetry breaking are the two crucial ingredients to understand the matter-antimatter asymmetry in our universe. Electroweak baryogenesis is an intriguing solution to the puzzle of this unexplained observed asymmetry because of its testability at present and near future collider experiments. The possibilities of testing CP phase in the Two-Higgs-Doublets Models (2HDMs) and the generation of a strong first-order electroweak phase transition (SFOEWPT) in the real singlet model at the future high luminosity LHC are studied. In addition to the specific extensions to the Standard Model (SM), I …


Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Evaluation Of The Erodibility Of Soft Clays And The Influence Of Biopolymers, Pamela Judge Oct 2018

Evaluation Of The Erodibility Of Soft Clays And The Influence Of Biopolymers, Pamela Judge

Doctoral Dissertations

Erosion of silts and clays is less well understood than erosion of sands. Further, current and anticipated climate change impacts along coastlines compel consideration of new approaches to coastal protection measures; seawalls and breakwaters designs now include natural and nature-based measures. The first research topic consists of the Adaptive Gradients Framework which was a theoretically-informed facilitation tool. The framework was intended to aid a collaborative and interdisciplinary decision-making process to encourage inclusion of natural and nature-based measures in coastal protection planning and design. This research is the culmination of a series of workshops and fieldtrips executed by the Sustainable Adaptive …


Measured Capillary Forces On Spheres At Liquid Interfaces And The Mechanics Of Interfacial Particulate Assemblies, Wei He Oct 2018

Measured Capillary Forces On Spheres At Liquid Interfaces And The Mechanics Of Interfacial Particulate Assemblies, Wei He

Doctoral Dissertations

Particle-laden interfaces have promising potentials in many fields because the particulate nature can endow the surface with physical properties that are not readily obtained from molecular-scale surfactants. In this dissertation, we first focus on measuring capillary forces on particles at fluid interfaces in order to assess the key parameters that yield effective stabilizing particles. In experiment, the force and the displacement of a millimeter-scale particle passing through a liquid interface were recorded. We find that the peak force needed to detach a particle from an interface crowded with other particles is consistently smaller than the force at a clean interface. …


The Dissociative Chemisorption Of Methane And Its Isotopologues On Metal Surfaces, Han Guo Oct 2018

The Dissociative Chemisorption Of Methane And Its Isotopologues On Metal Surfaces, Han Guo

Doctoral Dissertations

The dissociative chemisorption of small molecules on metal surfaces is an important step in many heterogeneous catalytic processes, and has received considerable scientific attention. In this thesis, a quantum approach based on the reaction path Hamiltonian is used to explore the dissociative chemisorption of methane and its deuterated isotopologues on several metal surfaces. The theoretical approach is described in Chapter 2. This approach treats all 15 degrees of freedom of the methane molecule, and includes the effects of lattice motion, allowing us to examine the translational and vibrational enhancements, mode- and bond-selectivity and the surface temperature dependence observed in experiments. …


Inexact And Nonlinear Extensions Of The Feast Eigenvalue Algorithm, Brendan E. Gavin Oct 2018

Inexact And Nonlinear Extensions Of The Feast Eigenvalue Algorithm, Brendan E. Gavin

Doctoral Dissertations

Eigenvalue problems are a basic element of linear algebra that have a wide variety of applications. Common examples include determining the stability of dynamical systems, performing dimensionality reduction on large data sets, and predicting the physical properties of nanoscopic objects. Many applications require solving large dimensional eigenvalue problems, which can be very challenging when the required number of eigenvalues and eigenvectors is also large. The FEAST algorithm is a method of solving eigenvalue problems that allows one to calculate large numbers of eigenvalue/eigenvector pairs by using contour integration in the complex plane to divide the large number of desired pairs …


Essays In Financial Economics: Announcement Effects In Fixed Income Markets, James J. Forest Oct 2018

Essays In Financial Economics: Announcement Effects In Fixed Income Markets, James J. Forest

Doctoral Dissertations

ABSTRACT ESSAYS IN FINANCIAL ECONOMICS: ANNOUNCEMENT EFFECTS IN FIXED INCOME MARKETS PHD IN FINANCE MAY 2018 JAMES J FOREST B.A., FRAMINGHAM STATE UNIVERSITY M.S., NORTHEASTERN UNIVERSITY Ph.D., UNIVERSITY OF MASSACHUSETTS – AMHERST Directed by: Professor Hossein B. Kazemi This dissertation demonstrates the use of empirical techniques for dealing with modeling issues that arise when analyzing announcement effects in fixed income markets. It describes empirical challenges in achieving unbiased and efficient parameter estimates and shows the importance of modelling a wide range of macroeconomic announcement effects to avoid omitted variable bias. Employing techniques common in Macroeconomics, financial market researchers are better …


Preparation, Mechanics And Structure Of Sphere Packings Near The Random Loose Packing Limit, Greg Robert Farrell Oct 2018

Preparation, Mechanics And Structure Of Sphere Packings Near The Random Loose Packing Limit, Greg Robert Farrell

Doctoral Dissertations

Packings of monodisperse, hard spheres serve as an important model system in the understanding of granular materials which are ubiquitous in nature and industry from sedimented river beds, to construction aggregates, to pharmaceuticals. Unlike frictionless hard spheres which are only stable at densities near the random close packing volume fraction, packings of real spheres form stable packings over a range of volume fractions. We report experimental investigations of sedimented packings of noncohesive polymethyl-methacrylate spheres over a range of volume fractions near the lower limit of this range of volume fractions. We create packings by slow sedimentation in a viscous fluid …


A Relation Between Mirkovic-Vilonen Cycles And Modules Over Preprojective Algebra Of Dynkin Quiver Of Type Ade, Zhijie Dong Oct 2018

A Relation Between Mirkovic-Vilonen Cycles And Modules Over Preprojective Algebra Of Dynkin Quiver Of Type Ade, Zhijie Dong

Doctoral Dissertations

The irreducible components of the variety of all modules over the preprojective algebra and MV cycles both index bases of the universal enveloping algebra of the positive part of a semisimple Lie algebra canonically. To relate these two objects Baumann and Kamnitzer associate a cycle in the affine Grassmannian to a given module. It is conjectured that the ring of functions of the T-fixed point subscheme of the associated cycle is isomorphic to the cohomology ring of the quiver Grassmannian of the module. I give a proof of part of this conjecture. The relation between this conjecture and the reduceness …


Run-Time Program Phase Detection And Prediction, Meng-Chieh Chiu Oct 2018

Run-Time Program Phase Detection And Prediction, Meng-Chieh Chiu

Doctoral Dissertations

It is well-known that programs tend to have multiple phases in their execution. Because phases have impact on micro-architectural features such as caches and branch predictors, they are relevant to program performance (Xian et al., 2007; Roh et al., 2009; Gu and Verbrugge, 2008) and energy consumption. They are also relevant to detecting whether a program is executing as expected or is encountering unusual or exceptional conditions, a software engineering and program monitoring concern (Peleg and Mendelson, 2007; Singer and Kirkham, 2008; Pirzadeh et al., 2011; Benomar et al., 2014). We present methods for real-time phase change detection and phase …