Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

2018

Institution
Keyword
Publication
Publication Type

Articles 31 - 60 of 120

Full-Text Articles in Physical Sciences and Mathematics

The Aromatization Of Propene Via Nano-Size Hzsm-5, Wayne Seames, Swapnil Fegade, Inna Sakodynskaya, Darrin Muggli, Brian Tande, Alena Kubatova, Evguenii Kozliak Oct 2018

The Aromatization Of Propene Via Nano-Size Hzsm-5, Wayne Seames, Swapnil Fegade, Inna Sakodynskaya, Darrin Muggli, Brian Tande, Alena Kubatova, Evguenii Kozliak

Chemistry Faculty Publications

Zeolite (ZSM) catalysts are known to convert small-size alkenes, e.g., propene, into aromatic hydrocarbons, specifically benzene, toluene and xylenes (BTX), with both high efficiency and specificity. The efficiency of conventional and hierarchical nano-size ZSM-5 for propene aromatization was compared in this study using a Design of Experiments (DOE) approach combined with detailed product analysis. Contrary to our expectations, the former showed a significantly greater BTX yield than the latter. Analysis of the obtained data by DOE and additional experiments with soybean oil cracking using both catalyst types indicated that a reason for the observed reduced activity of nano-scale zeolites may …


Characterization And Evaluation Of Cordless Nailer Performance For Liquid And Gaseous Fuels, Mark Carioscio Oct 2018

Characterization And Evaluation Of Cordless Nailer Performance For Liquid And Gaseous Fuels, Mark Carioscio

Master's Theses (2009 -)

The Paslode Cordless XP Framing Nailer is a combustion-powered nail gun that operates using a fuel blend of a propylene and 1-butene. This tool is designed to drive nails using a piston driven by a combustion reaction. The current fuel blend is able to fire approximately 1200 shots per fuel cartridge and match the energy output of pneumatic, corded nailers on the market. This thesis is written with the intent to gain a better understanding of the operation of the tool and how its performance varies when the fuel source is altered. A bizonal combustion model was created to simulate …


A Nonlinear Systems Framework For Cyberattack Prevention For Chemical Process Control Systems, Helen Durand Sep 2018

A Nonlinear Systems Framework For Cyberattack Prevention For Chemical Process Control Systems, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Recent cyberattacks against industrial control systems highlight the criticality of preventing future attacks from disrupting plants economically or, more critically, from impacting plant safety. This work develops a nonlinear systems framework for understanding cyberattack-resilience of process and control designs and indicates through an analysis of three control designs how control laws can be inspected for this property. A chemical process example illustrates that control approaches intended for cyberattack prevention which seem intuitive are not cyberattack-resilient unless they meet the requirements of a nonlinear systems description of this property.


Atomically Dispersed Pd On Nanodiamond/Graphene Hybrid For Selective Hydrogenation Of Acetylene, Fei Huang, Yuchen Deng, Yunlei Chen, Xiangbin Cai, Mia Peng, Zhimin Jia, Pengju Ren, Dequan Xiao, Xiaodong Wen, Ning Wang, Hongyang Liu, Ding Ma Sep 2018

Atomically Dispersed Pd On Nanodiamond/Graphene Hybrid For Selective Hydrogenation Of Acetylene, Fei Huang, Yuchen Deng, Yunlei Chen, Xiangbin Cai, Mia Peng, Zhimin Jia, Pengju Ren, Dequan Xiao, Xiaodong Wen, Ning Wang, Hongyang Liu, Ding Ma

Chemistry and Chemical Engineering Faculty Publications

An atomically dispersed palladium (Pd) catalyst supported onto a defective nanodiamond-graphene (ND@G) is reported here for selective hydrogenation of acetylene in the presence of abundant ethylene. The catalyst exhibits remarkable performance for the selective conversion of acetylene to ethylene: high conversion (100%), ethylene selectivity (90%), and good stability (i.e., steady for at least 30 hours). The unique struc-ture of the catalyst (i.e., atomically dispersion of Pd atoms on graphene through Pd-C bond anchoring) ensure the facile desorption of ethylene against the over-hydrogenation of ethylene to undesired ethane, which is the key for the outstanding selectivity of the catalyst.


Assembling Of Niox/Mwcnts-Gc Anodic Nanocatalyst For Water Electrolysis Applications, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Saher D. Khamis Eng Sep 2018

Assembling Of Niox/Mwcnts-Gc Anodic Nanocatalyst For Water Electrolysis Applications, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Saher D. Khamis Eng

Chemical Engineering

Glassy carbon (GC) electrode is intended to be modified with nickel oxide (NiOx) and multiwalled carbon nanotubes (MWCNTs) in the anodic reaction of water electrolysis. NiOx deposition time is optimized and a 5 min was enough to attain the maximum activity. A further modification of the catalyst with MWCNTs could greatly enhance its stability during continuous electrolysis. As an outcome, an energy amount of 21.7 kWh/KgO2 is minimized. Several electrochemical and materials characterization setups will be utilized to test the catalyst activity and to know its geometry and structure.


Electrochemical Performances Of Neodymium Doped Lead Dioxide Composite Anode, Hong-Hui Wang, Ming-Jie Ma, Jie Feng, Huang-Ya Kang, Wen-Jie Huang Aug 2018

Electrochemical Performances Of Neodymium Doped Lead Dioxide Composite Anode, Hong-Hui Wang, Ming-Jie Ma, Jie Feng, Huang-Ya Kang, Wen-Jie Huang

Journal of Electrochemistry

Neodymium (Nd) doped titanium (Ti)-based lead dioxide (PbO2) composite anode was prepared by electrodeposition. The surface morphologies and crystal structures of the as-prepared anodes were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) technique, respectively. The electrochemical performances of PbO2-Nd anode were studied by electrochemical impedance spectroscopy, linear sweep voltammetry and cyclic voltammetry. Additionally, the electrocatalytic activity and durability of PbO2-Nd anode were investigated through the degradation of simulative refractory organic wastewater of phenol. The results showed that Nd doping made the PbO2 anode surface structure dense and uniform with smaller …


Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi Xu, Juan Liu, Hua-Zong Wu, Wen-Jie Jiang Aug 2018

Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi Xu, Juan Liu, Hua-Zong Wu, Wen-Jie Jiang

Journal of Electrochemistry

Hydrogen energy, a kind of clean and renewable energy, is considered to be the solution to the problems of energy crisis and environmental deterioration. Electrochemical water splitting is an efficient and promising technology for the production of high-purity hydrogen. However, oxygen evolution reaction (OER) at the anode of water electrolyzer limits the efficiency of water splitting due to the high overpotential. Therefore, the challenges still remain for the exploration of highly active, stable and low-cost catalysts with superior activity for OER. Herein, nickel borate nanorods with high crystallinity were prepared via high-temperature calcination. The as-obtained nickel borate nanorods with 2 …


An Aqueous All-Metal Oxide Asymmetric Supercapacitor With High Gravimetric And Volumetric Energy Densities, Jing Xin, Xu Zhang, Wang Wei, Lang Jun-Wei Aug 2018

An Aqueous All-Metal Oxide Asymmetric Supercapacitor With High Gravimetric And Volumetric Energy Densities, Jing Xin, Xu Zhang, Wang Wei, Lang Jun-Wei

Journal of Electrochemistry

Only with both high gravimetric and high volumetric energy densities, can supercapacitors find more extensive applications.In this paper, by making good use of the interesting nanostructures and the high packing densities of RuO2 (nanoshpheres,1.69 g·cm-3) and Co-Ni oxide (nanoflakes, 2.14 g·cm-3), the RuO2//KOH//Co-Ni oxide all-metal oxide asymmetric supercapacitors with high performance were successfully fabricated, which led to the maximum specific capacitance of 217.5 F·g-1 (412.3 F·cm-3) and specific energy density of 61.8 Wh·kg-1 (121 Wh·L-1) in a cell voltage between 0 and 1.5 V in KOH electrolyte. …


Plant Stimuli-Responsive Biodegradable Polymers For The Use In Timed Release Fertilizer Coatings, Spencer Heuchan Aug 2018

Plant Stimuli-Responsive Biodegradable Polymers For The Use In Timed Release Fertilizer Coatings, Spencer Heuchan

Electronic Thesis and Dissertation Repository

The use of nitrogen-based fertilizers continues to accelerate with human population growth and increases in global food requirements. Enhanced efficiency fertilizers (EEFs) have been developed to improve the synchronization between nutrient supply and crop nutrient demand. However, many of the current controlled release fertilizers are coated with non-degradable polymers that contribute to accumulation of microplastics within ecosystems. This thesis describes research towards the development of a new class of fertilizer coatings using a self-immolative polymer known as poly (ethyl glyoxylate) (PEtG). PEtG itself does not have suitable properties to produce a viable coating but once blended with another degradable polyester …


Mechanistic Studies Of Reducible Metal Oxides As Hydrodeoxygenation Catalysts, Akbar Mahdavi Shakib Aug 2018

Mechanistic Studies Of Reducible Metal Oxides As Hydrodeoxygenation Catalysts, Akbar Mahdavi Shakib

Electronic Theses and Dissertations

Hydrodeoxygenation of phenol to benzene using ruthenium supported titania catalysts strongly varies depending on the support crystal structure and preparation conditions. Here, we performed spectroscopic characterization of titania supports to identify the surface impurities common to commercial and synthesized titania samples using a variety of spectroscopic methods. Sulfate impurities were detected for the commercial anatase samples and a procedure for their elimination was proposed so that inactive catalysts gained reactivity. Surface hydroxyls of different TiO2 samples (anatase, rutile, and pyrogenic) were identified using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments performed on vigorously cleaned surfaces and a facet-specific assignment …


Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Yaser M. Asal Mr, Islam M. Al-Akraa Dr, Amr M. Arafa Eng. Aug 2018

Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Yaser M. Asal Mr, Islam M. Al-Akraa Dr, Amr M. Arafa Eng.

Chemical Engineering

Manganese oxide (MnOx) and multiwalled carbon nanotubes (MWCNTs) are intended to modify the GC electrode for oxygen evolution reaction (OER). Optimization of MnOx loading is carried out and the deposition of 55 cycles was sufficient to obtain the highest activity toward OER. The stability of the catalyst is enhanced by the addition of MWCNTs. As a result, an amount of 22 kWh/Kg of O2 of energy is saved. Several techniques including cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy will be combined to track the catalyst activity and to determine its …


Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy Aug 2018

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Dehydrogenation of alkanes is the first step in transforming light hydrocarbons into liquid fuels and chemicals. This process has traditionally used platinum alloys as catalysts. Alloys are used industrially because they have a greater selectivity than monometallic platinum. Alloying platinum with an inactive promoter modifies the crystalline structure of the surface (geometric effect), and the 5d electrons in platinum responsible for chemistry (electronic effect); both have been suggested to be primarily responsible for dehydrogenation selectivity in platinum alloys. Alloy catalysts have been synthesized using early 3d transition metal promoters with the same Pt3M crystal structure. X-Ray Absorption Spectroscopy …


Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung Aug 2018

Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung

The Summer Undergraduate Research Fellowship (SURF) Symposium

A new generation of silicon pixel detectors is required to cope with the unprecedented luminosities at the high-luminosity phase of the Large Hadron Collider (HL-LHC) in 2025. The HL-LHC provides a high radiation, high interaction rate environment for the innermost detector region of the CMS detector. This can lead to an uncontrolled increase in temperature of the detector that can destroy the silicon pixels. Moreover, too high operating temperature can add noise to the data obtained from the detector and can slow the read out cheap down. Therefore, the Phase II upgrade to the Compact Muon Solenoid (CMS) experiment requires …


State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand Aug 2018

State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Security of chemical process control systems against cyberattacks is critical due to the potential for injuries and loss of life when chemical process systems fail. A potential means by which process control systems may be attacked is through the manipulation of the measurements received by the controller. One approach for addressing this is to design controllers that make manipulating the measurements received by the controller in any meaningful fashion very difficult, making the controllers a less attractive target for a cyberattack of this type. In this work, we develop a model predictive control (MPC) implementation strategy that incorporates Lyapunov-based stability …


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Graduate Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


What Can I Do As A Student To Make A Positive Impact On The Environment?, Tammy Guthrie, Greg Herzig, Kathy Prophet, Cassie Kautzer Jul 2018

What Can I Do As A Student To Make A Positive Impact On The Environment?, Tammy Guthrie, Greg Herzig, Kathy Prophet, Cassie Kautzer

Middle School Lesson Plans

Students discover ways they can make a positive impact on the environment.


Arrhenius Rate Chemistry-Informed Inter-Phase Source Terms (Arciist), Matthew J. Schwaab, Robert B. Greendyke, Bryan J. Steward Jul 2018

Arrhenius Rate Chemistry-Informed Inter-Phase Source Terms (Arciist), Matthew J. Schwaab, Robert B. Greendyke, Bryan J. Steward

Faculty Publications

Currently, in macro-scale hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these burn rate models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of Arrhenius Rate Chemistry-Informed Interphase Source Terms (ARCIIST) in place of empirically derived burn models will improve the accuracy for these computational codes. A reacting chemistry model of this form was developed for the cyclic …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


Carbon Composite Fe3O4 Nanoparticles Based Electrochemical Sensor For Hydrogen Peroxide Detection, Si-Yu Zhang, Hui-Juan Wang, Shu-Fang Li, Jian-Ying Qu Jun 2018

Carbon Composite Fe3O4 Nanoparticles Based Electrochemical Sensor For Hydrogen Peroxide Detection, Si-Yu Zhang, Hui-Juan Wang, Shu-Fang Li, Jian-Ying Qu

Journal of Electrochemistry

In this work, a novel hydrogen peroxide electrochemical sensor was constructed with ferroferric oxide (Fe3O4) magnetic nanoparticles, which demonstrated good electrocatalytic activity for hydrogen peroxide. There existed a good linear relationship between the concentration of hydrogen peroxide and the oxidation peak current in the range of 1.00 × 10-6 ~ 1.00 × 10-3 mol·L-1 (R = 0.9980) with the detection limit of 6.60 × 10-7 mol·L-1. The sensor exhibited good anti-interference ability, high reproducibility and stability.


Lead Modified Nanoporous Platinum Electro-Catalysts For Formic Acid Oxidation, Yuanyuan Zhang, Qingfeng Yi, Gekunkun Zuo, Tao Zou, Xiaoping Liu, Xiulin Zhou Jun 2018

Lead Modified Nanoporous Platinum Electro-Catalysts For Formic Acid Oxidation, Yuanyuan Zhang, Qingfeng Yi, Gekunkun Zuo, Tao Zou, Xiaoping Liu, Xiulin Zhou

Journal of Electrochemistry

Platinum (Pt) catalysts modified by other suitable metals significantly enhance their electrochemical activities for formic acid oxidation. In this work, a titanium-supported nanoporous network platinum (nanoPt/Ti) electrode was prepared using a hydrothermal method. The as-prepared nanoPt/Ti electrode was modified with a certain amount of lead by using cyclic voltammetry for different scan cycle numbers (n), namely, n = 10, 15, 20 and 30, to synthesize the novel lead-modified nanoporous Pt (nanoPb(n)-Pt/Ti) electrodes. Electro-oxidation of formic acid on these electrodes was studied with cyclic voltammetry (CV), chronoamperometry and chronopotentiometry in sulfuric acid solution. CV curves showed that both nanoPt/Ti …


Recent Progress For Fe-N-C Electrocatalysts In Alkaline Fuel Cells, Xin Deng, Heng-Quan Chen, Ye Hu, Qing-Gang He Jun 2018

Recent Progress For Fe-N-C Electrocatalysts In Alkaline Fuel Cells, Xin Deng, Heng-Quan Chen, Ye Hu, Qing-Gang He

Journal of Electrochemistry

Fuel cells are highly recommended nowadays due to their intrinsic advantages such as high energy conversion efficiency, nearly no pollution, and convenient operation. With the development of anion exchange membrane, alkaline fuel cells have gone through a renaissance thanks to their superiorities such as faster reaction kinetics, wider choices for both fuels and electrocatalysts. It is essential to find an appropriate electrocatalyst for oxygen reduction reaction (ORR) to improve the performance of alkaline fuel cells. Further commercialization of the widely used Pt-based materials has suffered from disadvantages such as scarcity and high cost. As alternatives to largely investigated Pt-based materials, …


Chemical Stability Investigations Of Catalyst Layer In Pemfc, Yan-Yan Gao, Ming Hou, Yong-Yi Jiang, Dong Liang, Jun Ai, Li-Min Zheng Jun 2018

Chemical Stability Investigations Of Catalyst Layer In Pemfc, Yan-Yan Gao, Ming Hou, Yong-Yi Jiang, Dong Liang, Jun Ai, Li-Min Zheng

Journal of Electrochemistry

This work was intended to study the effect of free radicals on the chemical stability of catalyst layer via ex situ accelerated stress test (AST). Fenton reagent was used as the free radical provider in this research. Apart from the decomposition of Nafion in catalyst layer, the agglomerated Pt nanoparticles and the corroded carbon support were also observed after being treated in Fenton reagent for 100 h. Firstly, the existence of fluoride (F) ions evidenced the chemical decomposation of Nafion after being attacked by trace radical species, which was supported by the intensity decrease in the C-F stretching and vibration …


Pt/G-C3N4 Nanosheet For Visible Light €“Induced Enhancement Of The Activity For Formic Acid Electro-Oxidation, Yong-Rong Sun, Chun-Yu Du, Guo-Kang Han, Ya-Jing Wang, Yun-Zhi Gao, Ge-Ping Yin Jun 2018

Pt/G-C3N4 Nanosheet For Visible Light €“Induced Enhancement Of The Activity For Formic Acid Electro-Oxidation, Yong-Rong Sun, Chun-Yu Du, Guo-Kang Han, Ya-Jing Wang, Yun-Zhi Gao, Ge-Ping Yin

Journal of Electrochemistry

By using graphitic carbon nitride nanosheet (g-C3N4 nanosheet) as a support,Pt/g-C3N4 nanosheet catalyst was fabricated by microwave assisted polylol process. The nanoparticles size,composition,structure and optical properties of Pt/g-C3N4 nanosheet were characterized by TEM,XRD,XPS and UV-Vis diffuse reflectance spectroscopy. Comparing with the catalytic activities toward formic acid electro-oxidation under dark and visible light illumination,the superior activity of Pt/g-C3N4 nanosheet catalyst was achieved under visible light illumination. This visible light-driven enhancement in the formic acid performance could be attributed to the plasmon-induced electron-hole separation on g-C3N4 with …


Sustainable Production Of Bio-Based Succinic Acid From Plant Biomass, Enlin Lo Jun 2018

Sustainable Production Of Bio-Based Succinic Acid From Plant Biomass, Enlin Lo

USF Tampa Graduate Theses and Dissertations

Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced more sustainably by fermentation of sugars from renewable feedstocks (biomass). Bio-based succinic acid has excellent potential for becoming a platform chemical (building block) for commodity and high-value chemicals.

In this study, we focused on the production of bio-based succinic acid from the fiber of sweet sorghum (SS), which has a high fermentable sugar content and can be cultivated in a …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


Dynamic Modeling Of An Advanced Wastewater Treatment Plant, Komal Rathore Jun 2018

Dynamic Modeling Of An Advanced Wastewater Treatment Plant, Komal Rathore

USF Tampa Graduate Theses and Dissertations

Advanced wastewater treatment plants have complex biological kinetics, time variant influent rates and long processing times. The modeling and operation control of wastewater treatment plant gets complicated due to these characteristics. However, a robust operational system for a wastewater treatment plant is necessary to increase the efficiency of the plant, reduce energy cost and achieve environmental discharge limits. These discharge limits are set by the National Pollutant Discharge Elimination System (NPDES) for municipal and industrial wastewater treatment plants to limit the amount of nutrients being discharged into the aquatic systems.

This document summarizes the research to develop a supervisory operational …


Desalination Concentrate Disposal: Ecological Effects And Sustainable Solutions, Ryan Hanley Jun 2018

Desalination Concentrate Disposal: Ecological Effects And Sustainable Solutions, Ryan Hanley

Global Honors Theses

Freshwater availability is a growing global concern, and desalination is often presented as the solution, but from this important technology comes issues of toxic waste. Ecosystems are delicate areas that contain species adapted to that specific location, and any chemical or physical changes can disrupt the fitness of species. The concentrate byproduct waste from desalination plants is toxic to species if the concentrate is not compatible with the receiving water body. A critical review of scientific articles, industry-leading books, conversations with industry experts, and information from the American Membrane Technology Association conference was used to analyze the current knowledge. Species …


Preparation Of Supramolecular Amphiphilic Cyclodextrin Bilayer Vesicles For Pharmaceutical Applications, Kate E. Frischkorn Jun 2018

Preparation Of Supramolecular Amphiphilic Cyclodextrin Bilayer Vesicles For Pharmaceutical Applications, Kate E. Frischkorn

Master's Theses

Recent pharmaceutical developments have investigated using supramolecular nanoparticles in order to increase the bioavailability and solubility of drugs delivered in various methods. Modification of the carbohydrate cyclodextrin increases the ability to encapsulate hydrophobic pharmaceutical molecules by forming a carrier with a hydrophobic core and hydrophilic exterior. Guest molecules are commonly added to these inclusion complexes in order to add stability and further increase targeting abilities of the carriers. One such guest molecule is adamantine combined with a poly(ethylene glycol) chain. Vesicles are formed by hydrating a thin film of amphiphilic cyclodextrin and guest molecules in buffer solution that mimics physiological …


Chemotherapeutic Drug Cytotoxicity Measurement With A 3d Biomimetic Microfluidic Device And Computational Fluid Dynamics Model, Maryam Moarefian, Caroline Jones, Luke Achenie, Danesh Tafti May 2018

Chemotherapeutic Drug Cytotoxicity Measurement With A 3d Biomimetic Microfluidic Device And Computational Fluid Dynamics Model, Maryam Moarefian, Caroline Jones, Luke Achenie, Danesh Tafti

Biology and Medicine Through Mathematics Conference

No abstract provided.