Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren Oct 2018

Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

Modeling works which simulate the proton-exchange membrane fuel cell with the computational fluid dynamics approach involve the simultaneous solution of multiple, interconnected physics equations for fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts vary by how they treat the physics within and adjacent to the membrane-electrode assembly (MEA). Certain approaches treat the MEA not as part of the computational domain, but rather an interface connecting the anode and cathode computational domains. These approaches may lack the ability to consistently model catalyst layer losses and MEA ohmic resistance. This work presents an upgraded interface formulation …


Effects Of Rotating Magnetic Fields On Pem Fuel Cell Performance, Mao-Liang Wu, En-Ze Wang, Guang-De Pan, Zhong-Jun Liu, Fei Xie Apr 2018

Effects Of Rotating Magnetic Fields On Pem Fuel Cell Performance, Mao-Liang Wu, En-Ze Wang, Guang-De Pan, Zhong-Jun Liu, Fei Xie

Journal of Electrochemistry

Proton Exchange Membrane (PEM) fuel cell performance may be improved by application of additional magnetic fields. In this work, one square permanent magnet, made of either 16 combination cylinder magnets with homopolarity or 16 combination cylinder magnets with heteropolarity, was exerted on the fuel cell surface to produce additional magnetic field affecting PEM fuel cell performance. The influences of magnetic field status (rotating, static and none) on polarization and power density curves measured in a PEM fuel cell were investigated. The results verified the benefit of magnetic field, proving that the magnetic field distribution could improve the fuel cell output. …