Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

2018

Alloy

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei Dec 2018

Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei

Journal of Electrochemistry

One major challenge for a large-scale commercialization of the proton-exchange membrane fuel cells (PEMFCs) technologies that enable a shift to ‘zero-emission’ personal transportation, is the expensive and unstable Pt catalysts, which are mainly used to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) occurred on the air electrode of PEMFCs. Many research works have targets to improve the stability of Pt-based catalysts and to construct Pt/transitional metal alloys with low Pt loading amount. Herein, we provide a minireview for the Pt-based ORR catalysts based on our recent work, which covers a brief background introduction, the stability improvement of …


Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang Dec 2018

Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang

Journal of Electrochemistry

Structures and compositions have significant effects on the catalytic properties of nanomaterials. Herein, a facile etching-based method was employed to synthesize Pt-Cu nanodendrites (NDs) with uniform and homogeneous alloy structures for enhancing oxygen reduction reaction (ORR). The formation of dendritic morphology was ascribed to the etching effect caused by the oxidative etchants of the Br-/O2 pair. The atomic ratio of Pt/Cu in Pt-Cu NDs could be easily tuned by altering the ratio of the Pt/Cu precursors, without deteriorating the dendritic morphology. The most active carbon-supported Pt1Cu1 NDs (Pt1Cu1 NDs/C) exhibited the …