Open Access. Powered by Scholars. Published by Universities.®

Radiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Radiology

3d Convolutional Neural Networks For The Diagnosis Of 6 Unique Pathologies On Head Ct, Travis Clarke, Paras Lakhani, Md Jan 2020

3d Convolutional Neural Networks For The Diagnosis Of 6 Unique Pathologies On Head Ct, Travis Clarke, Paras Lakhani, Md

Phase 1

Introduction: Head CT scans are a standard first-line tool used by physicians in the diagnosis of neurological pathologies. Recently, the development of deep learning models such as convolutional neural networks (CNNs) has allowed the rapid identification of bleeds and other pathologies on CT scans. This study aims to show that by training 3D CNNs with a larger, curated dataset, a more comprehensive list of potential diagnoses can be included in the detailed model.

Methods: A retrospective study was performed using a dataset of 66,000 head CT studies from the Thomas Jefferson University health system. Studies were acquired using a natural …


Deep Gaze Velocity Analysis During Mammographic Reading For Biometric Identification Of Radiologists, Hong-Jun Yoon, Folami Alamudun, Kathy Hudson, Garnetta Morin-Ducote, Georgia Tourassi Jan 2018

Deep Gaze Velocity Analysis During Mammographic Reading For Biometric Identification Of Radiologists, Hong-Jun Yoon, Folami Alamudun, Kathy Hudson, Garnetta Morin-Ducote, Georgia Tourassi

Journal of Human Performance in Extreme Environments

Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed that …


Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett Jan 2018

Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett

Theses and Dissertations

Four dimensional imaging has become part of the standard of care for diagnosing and treating non-small cell lung cancer. In radiotherapy applications 4D fan-beam computed tomography (4D-CT) and 4D cone-beam computed tomography (4D-CBCT) are two advanced imaging modalities that afford clinical practitioners knowledge of the underlying kinematics and structural dynamics of diseased tissues and provide insight into the effects of regular organ motion and the nature of tissue deformation over time. While these imaging techniques can facilitate the use of more targeted radiotherapies, issues surrounding image quality and accuracy currently limit the utility of these images clinically.

The purpose of …