Open Access. Powered by Scholars. Published by Universities.®

Neurology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Neurology

Atlas-Based Shared-Boundary Deformable Multi-Surface Models Through Multi-Material And Two-Manifold Dual Contouring, Tanweer Rashid, Sharmin Sultana, Mallar Chakravarty, Michel Albert Audette Jan 2023

Atlas-Based Shared-Boundary Deformable Multi-Surface Models Through Multi-Material And Two-Manifold Dual Contouring, Tanweer Rashid, Sharmin Sultana, Mallar Chakravarty, Michel Albert Audette

Electrical & Computer Engineering Faculty Publications

This paper presents a multi-material dual “contouring” method used to convert a digital 3D voxel-based atlas of basal ganglia to a deformable discrete multi-surface model that supports surgical navigation for an intraoperative MRI-compatible surgical robot, featuring fast intraoperative deformation computation. It is vital that the final surface model maintain shared boundaries where appropriate so that even as the deep-brain model deforms to reflect intraoperative changes encoded in ioMRI, the subthalamic nucleus stays in contact with the substantia nigra, for example, while still providing a significantly sparser representation than the original volumetric atlas consisting of hundreds of millions of voxels. The …


Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin Jan 2023

Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Rapid early progression (REP) has been defined as increased nodular enhancement at the border of the resection cavity, the appearance of new lesions outside the resection cavity, or increased enhancement of the residual disease after surgery and before radiation. Patients with REP have worse survival compared to patients without REP (non-REP). Therefore, a reliable method for differentiating REP from non-REP is hypothesized to assist in personlized treatment planning. A potential approach is to use the radiomics and fractal texture features extracted from brain tumors to characterize morphological and physiological properties. We propose a random sampling-based ensemble classification model. The proposed …


Comparison Of Machine Learning Methods For Classification Of Alexithymia In Individuals With And Without Autism From Eye-Tracking Data, Furkan Iigin, Megan A. Witherow, Khan M. Iftekharuddin Jan 2023

Comparison Of Machine Learning Methods For Classification Of Alexithymia In Individuals With And Without Autism From Eye-Tracking Data, Furkan Iigin, Megan A. Witherow, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Alexithymia describes a psychological state where individuals struggle with feeling and expressing their emotions. Individuals with alexithymia may also have a more difficult time understanding the emotions of others and may express atypical attention to the eyes when recognizing emotions. This is known to affect individuals with Autism Spectrum Disorder (ASD) differently than neurotypical (NT) individuals. Using a public data set of eye-tracking data from seventy individuals with and without autism who have been assessed for alexithymia, we train multiple traditional machine learning models for alexithymia classification including support vector machines, logistic regression, decision trees, random forest, and multilayer perceptron. …


Radiomic Texture Feature Descriptor To Distinguish Recurrent Brain Tumor From Radiation Necrosis Using Multimodal Mri, M. S. Sadique, A. Temtam, E. Lappinen, K. M. Iftekharuddin Jan 2022

Radiomic Texture Feature Descriptor To Distinguish Recurrent Brain Tumor From Radiation Necrosis Using Multimodal Mri, M. S. Sadique, A. Temtam, E. Lappinen, K. M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Despite multimodal aggressive treatment with chemo-radiation-therapy, and surgical resection, Glioblastoma Multiforme (GBM) may recur which is known as recurrent brain tumor (rBT), There are several instances where benign and malignant pathologies might appear very similar on radiographic imaging. One such illustration is radiation necrosis (RN) (a moderately benign impact of radiation treatment) which are visually almost indistinguishable from rBT on structural magnetic resonance imaging (MRI). There is hence a need for identification of reliable non-invasive quantitative measurements on routinely acquired brain MRI scans: pre-contrast T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR) that can …


Uncertainty Estimation In Classification Of Mgnt Using Radiogenomics For Glioblastoma Patients, W. Farzana, Z. A. Shboul, A. Temtam, K. M. Iftekharuddin Jan 2022

Uncertainty Estimation In Classification Of Mgnt Using Radiogenomics For Glioblastoma Patients, W. Farzana, Z. A. Shboul, A. Temtam, K. M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Glioblastoma Multiforme (GBM) is one of the most malignant brain tumors among all high-grade brain cancers. Temozolomide (TMZ) is the first-line chemotherapeutic regimen for glioblastoma patients. The methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) gene is a prognostic biomarker for tumor sensitivity to TMZ chemotherapy. However, the standardized procedure for assessing the methylation status of MGMT is an invasive surgical biopsy, and accuracy is susceptible to resection sample and heterogeneity of the tumor. Recently, radio-genomics which associates radiological image phenotype with genetic or molecular mutations has shown promise in the non-invasive assessment of radiotherapeutic treatment. This study proposes a machine-learning framework …


Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel Jan 2022

Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

Electrical & Computer Engineering Faculty Publications

Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder the translation of DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties, could enable clinical review of the most uncertain regions, thereby building trust and paving the way towards clinical translation. Recently, a number of uncertainty estimation methods have been introduced for DL medical image segmentation tasks. …


Efficacy Of Radiomics And Genomics In Predicting Tp53 Mutations In Diffuse Lower Grade Glioma, Zeina A. Shboul, Khan Iftekharuddin Jan 2020

Efficacy Of Radiomics And Genomics In Predicting Tp53 Mutations In Diffuse Lower Grade Glioma, Zeina A. Shboul, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

An updated classification of diffuse lower-grade gliomas is established in the 2016 World Health Organization Classification of Tumors of the Central Nervous System based on their molecular mutations such as TP53 mutation. This study investigates machine learning methods for TP53 mutation status prediction and classification using radiomics and genomics features, respectively. Radiomics features represent patients' age and imaging features that are extracted from conventional MRI. Genomics feature is represented by patients’ gene expression using RNA sequencing. This study uses a total of 105 LGG patients, where the patient dataset is divided into a training set (80 patients) and testing set …


Deep Learning With Context Encoding For Semantic Brain Tumor Segmentation And Patient Survival Prediction, Linmin Pei, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin Jan 2020

Deep Learning With Context Encoding For Semantic Brain Tumor Segmentation And Patient Survival Prediction, Linmin Pei, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

One of the most challenging problems encountered in deep learning-based brain tumor segmentation models is the misclassification of tumor tissue classes due to the inherent imbalance in the class representation. Consequently, strong regularization methods are typically considered when training large-scale deep learning models for brain tumor segmentation to overcome undue bias towards representative tissue types. However, these regularization methods tend to be computationally exhaustive, and may not guarantee the learning of features representing all tumor tissue types that exist in the input MRI examples. Recent work in context encoding with deep CNN models have shown promise for semantic segmentation of …


A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.) Jan 2015

A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.)

Electrical & Computer Engineering Faculty Publications

MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images.

We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. …


Empirical Models Of Scalp-Eeg Responses Using Non-Concurrent Intracranial Responses, Komalpreet Kaur, Jerry J. Shih, Dean J. Krusienski Jan 2014

Empirical Models Of Scalp-Eeg Responses Using Non-Concurrent Intracranial Responses, Komalpreet Kaur, Jerry J. Shih, Dean J. Krusienski

Electrical & Computer Engineering Faculty Publications

Objective- This study presents inter-subject models of scalp-recorded electroencephalographic (sEEG) event-related potentials (ERPs) using intracranially recorded ERPs from electrocorticography and stereotactic depth electrodes in the hippocampus, generally termed as intracranial EEG (iEEG).

Approach- The participants were six patients with medically-intractable epilepsy that underwent temporary placement of intracranial electrode arrays to localize seizure foci. Participants performed one experimental session using a brain-computer interface matrix spelling paradigm controlled by sEEG prior to the iEEG electrode implantation, and one or more identical sessions controlled by iEEG after implantation. All participants were able to achieve excellent spelling accuracy using sEEG, four of the participants …


Direct Classification Of All American English Phonemes Using Signals From Functional Speech Motor Cortex, Emily M. Mugler, James L. Patton, Robert D. Flint, Zachary A. Wright, Stephan U. Schuele, Joshua Rosenow, Jerry J. Shih, Dean J. Krusienski, Marc W. Slutzky Jan 2014

Direct Classification Of All American English Phonemes Using Signals From Functional Speech Motor Cortex, Emily M. Mugler, James L. Patton, Robert D. Flint, Zachary A. Wright, Stephan U. Schuele, Joshua Rosenow, Jerry J. Shih, Dean J. Krusienski, Marc W. Slutzky

Electrical & Computer Engineering Faculty Publications

Although brain-computer interfaces (BCIs) can be used in several different ways to restore communication, communicative BCI has not approached the rate or efficiency of natural human speech. Electrocorticography (ECoG) has precise spatiotemporal resolution that enables recording of brain activity distributed over a wide area of cortex, such as during speech production. In this study, we investigated words that span the entire set of phonemes in the General American accent using ECoG with 4 subjects. We classified phonemes with up to 36% accuracy when classifying all phonemes and up to 63% accuracy for a single phoneme. Further, misclassified phonemes follow articulation …


Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.) Jan 2011

Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.)

Electrical & Computer Engineering Faculty Publications

In a recent study [1], we investigated the feasibility of predicting brain tumor progression based on multiple MRI series and we tested our methods on seven patients' MRI images scanned at three consecutive visits A, B and C. Experimental results showed that it is feasible to predict tumor progression from visit A to visit C using a model trained by the information from visit A to visit B. However, the trained model failed when we tried to predict tumor progression from visit B to visit C, though it is clinically more important. Upon a closer look at the MRI scans …


Histogram Analysis Of Adc In Brain Tumor Patients, Debrup Banerjee, Jihong Wang, Jiang Li, Norbert J. Pelc (Ed.), Ehsan Samei (Ed.), Robert M. Nishikawa (Ed.) Jan 2011

Histogram Analysis Of Adc In Brain Tumor Patients, Debrup Banerjee, Jihong Wang, Jiang Li, Norbert J. Pelc (Ed.), Ehsan Samei (Ed.), Robert M. Nishikawa (Ed.)

Electrical & Computer Engineering Faculty Publications

At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, …


Eeg Artifact Removal Using A Wavelet Neural Network, Hoang-Anh T. Nguyen, John Musson, Jiang Li, Frederick Mckenzie, Guangfan Zhang, Roger Xu, Carl Richey, Tom Schnell, Thomas E. Pinelli (Ed.) Jan 2011

Eeg Artifact Removal Using A Wavelet Neural Network, Hoang-Anh T. Nguyen, John Musson, Jiang Li, Frederick Mckenzie, Guangfan Zhang, Roger Xu, Carl Richey, Tom Schnell, Thomas E. Pinelli (Ed.)

Electrical & Computer Engineering Faculty Publications

In this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We compared the WNN algorithm with the ICA technique and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.


Prediction Of Brain Tumor Progression Using A Machine Learning Technique, Yuzhong Shen, Debrup Banerjee, Jiang Li, Adam Chandler, Yufei Shen, Frederic D. Mckenzie, Jihong Wang, Nico Karssemeijer (Ed.), Ronald M. Summers (Ed.) Jan 2010

Prediction Of Brain Tumor Progression Using A Machine Learning Technique, Yuzhong Shen, Debrup Banerjee, Jiang Li, Adam Chandler, Yufei Shen, Frederic D. Mckenzie, Jihong Wang, Nico Karssemeijer (Ed.), Ronald M. Summers (Ed.)

Electrical & Computer Engineering Faculty Publications

A machine learning technique is presented for assessing brain tumor progression by exploring six patients' complete MRI records scanned during their visits in the past two years. There are ten MRI series, including diffusion tensor image (DTI), for each visit. After registering all series to the corresponding DTI scan at the first visit, annotated normal and tumor regions were overlaid. Intensity value of each pixel inside the annotated regions were then extracted across all of the ten MRI series to compose a 10 dimensional vector. Each feature vector falls into one of three categories:normal, tumor, and normal but progressed to …