Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 53

Full-Text Articles in Medical Neurobiology

Mechanisms Of Action Of Antiseizure Drugs And The Ketogenic Diet., Michael Rogawski, Jong Rho, Wolfgang Löscher Dec 2015

Mechanisms Of Action Of Antiseizure Drugs And The Ketogenic Diet., Michael Rogawski, Jong Rho, Wolfgang Löscher

Michael A. Rogawski

Antiseizure drugs (ASDs), also termed antiepileptic drugs, are the main form of symptomatic treatment for people with epilepsy, but not all patients become free of seizures. The ketogenic diet is one treatment option for drug-resistant patients. Both types of therapy exert their clinical effects through interactions with one or more of a diverse set of molecular targets in the brain. ASDs act by modulation of voltage-gated ion channels, including sodium, calcium, and potassium channels; by enhancement of gamma-aminobutyric acid (GABA)-mediated inhibition through effects on GABA-A receptors, the GABA transporter 1 (GAT1) GABA uptake transporter, or GABA transaminase; through interactions with …


The Potential Of Antiseizure Drugs And Agents That Act On Novel Molecular Targets As Antiepileptogenic Treatments, Rafal M. Kaminski, Michael A. Rogawski, Henrik Klitgaard Dec 2013

The Potential Of Antiseizure Drugs And Agents That Act On Novel Molecular Targets As Antiepileptogenic Treatments, Rafal M. Kaminski, Michael A. Rogawski, Henrik Klitgaard

Michael A. Rogawski

A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, …


Anticonvulsant Potencies Of The Enantiomers Of The Neurosteroids Androsterone And Etiocholanolone Exceed Those Of The Natural Forms, Dorota Zolkowska, Ashish Dhir, Kathiresan Krishnan, Douglas F. Covey, Michael A. Rogawski Dec 2013

Anticonvulsant Potencies Of The Enantiomers Of The Neurosteroids Androsterone And Etiocholanolone Exceed Those Of The Natural Forms, Dorota Zolkowska, Ashish Dhir, Kathiresan Krishnan, Douglas F. Covey, Michael A. Rogawski

Michael A. Rogawski

RATIONALE: Androsterone [(3α,5α)-3-hydroxyandrostan-17-one; 5α,3α-A] and its 5β-epimer etiocholanolone [(3α,5β)-3-hydroxyandrostan-17-one; 5β,3α-A)], the major excreted metabolites of testosterone, are neurosteroid positive modulators of GABA-A receptors. Such neurosteroids typically show enantioselectivity in which the natural form is more potent than the corresponding unnatural enantiomer. For 5α,3α-A and 5β,3α-A, the unnatural enantiomers are more potent at GABA-A receptors than the natural forms. OBJECTIVES: The aim of this study was to compare the anticonvulsant potencies and time courses of 5α,3α-A and 5β,3α-A with their enantiomers in mouse seizure models. METHODS: Steroids were administered intraperitoneally to male NIH Swiss mice 15 min (or up to 6 …


The Intrinsic Severity Hypothesis Of Pharmacoresistance To Antiepileptic Drugs, Michael Rogawski Dec 2012

The Intrinsic Severity Hypothesis Of Pharmacoresistance To Antiepileptic Drugs, Michael Rogawski

Michael A. Rogawski

Pharmacoresistance to antiepileptic drugs (AEDs) is a barrier to seizure freedom for many persons with epilepsy. For nearly two decades, pharmacoresistance has been framed in terms of factors affecting the access of AEDs to their molecular targets in the brain or the actions of the drugs on these targets. Shortcomings in this prevailing view led to the formulation of the intrinsic severity hypothesis of pharmacoresistance to AEDs, which is based on the recognition that there are neurobiologic factors that confer phenotypic variation among individuals with etiologically similar forms of epilepsy and postulates that more severe epilepsy is more difficult to …


Preclinical Pharmacology Of Perampanel, A Selective Non-Competitive Ampa Receptor Antagonist, Michael A. Rogawski, Takahisa Hanada Dec 2012

Preclinical Pharmacology Of Perampanel, A Selective Non-Competitive Ampa Receptor Antagonist, Michael A. Rogawski, Takahisa Hanada

Michael A. Rogawski

Perampanel [2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl) benzonitrile; E2007] is a potent, selective, orally active non-competitive AMPA receptor antagonist developed for the treatment of epilepsy. Perampanel has a 2,3′-bipyridin-6′-one core structure, distinguishing it chemically from other AMPA receptor antagonist classes. Studies in various physiological systems indicate that perampanel selectively inhibits AMPA receptor-mediated synaptic excitation without affecting NMDA receptor responses. Blocking of AMPA receptors occurs at an allosteric site that is distinct from the glutamate recognition site. Radioligand-binding studies suggest that the blocking site coincides with that of the non-competitive antagonist GYKI 52466, believed to be on linker peptide segments of AMPA receptor subunits that transduce …


Glia And Epilepsy: Excitability And Inflammation, Orrin Devinsky, Annamaria Vezzani, Souhel Najjar, Nihal C. De Lanerolle, Michael A. Rogawski Dec 2012

Glia And Epilepsy: Excitability And Inflammation, Orrin Devinsky, Annamaria Vezzani, Souhel Najjar, Nihal C. De Lanerolle, Michael A. Rogawski

Michael A. Rogawski

Epilepsy is characterized by recurrent spontaneous seizures due to hyperexcitability and hypersynchrony of brain neurons. Current theories of pathophysiology stress neuronal dysfunction and damage, and aberrant connections as relevant factors. Most antiepileptic drugs target neuronal mechanisms. However, nearly one-third of patients have seizures that are refractory to available medications; a deeper understanding of mechanisms may be required to conceive more effective therapies. Recent studies point to a significant contribution by nonneuronal cells, the glia – especially astrocytes and microglia – in the pathophysiology of epilepsy. This review critically evaluates the role of glia-induced hyperexcitability and inflammation in epilepsy.


Ampa Receptors As A Molecular Target In Epilepsy Therapy, Michael A. Rogawski Dec 2012

Ampa Receptors As A Molecular Target In Epilepsy Therapy, Michael A. Rogawski

Michael A. Rogawski

Epileptic seizures occur as a result of episodic abnormal synchronous discharges in cerebral neuronal networks. Although a variety of nonconventional mechanisms may play a role in epileptic synchronization, cascading excitation within networks of synaptically connected excitatory glutamatergic neurons is a classical mechanism. As is the case throughout the central nervous system, fast synaptic excitation within and between brain regions relevant to epilepsy is mediated predominantly by AMPA receptors. By inhibiting glutamate-mediated excitation, AMPA receptor antagonists markedly reduce or abolish epileptiform activity in in vitro preparations and confer seizure protection in a broad range of animal seizure models. NMDA receptors may …


How Theories Evolved Concerning The Mechanism Of Action Of Barbiturates, Wolfgang Löscher, Michael A. Rogawski Nov 2012

How Theories Evolved Concerning The Mechanism Of Action Of Barbiturates, Wolfgang Löscher, Michael A. Rogawski

Michael A. Rogawski

The barbiturate phenobarbital has been in use in the treatment of epilepsy for 100 years. It has long been recognized that barbiturates act by prolonging and potentiating the action of γ-aminobutyric acid (GABA) on GABA-A) receptors and at higher concentrations directly activating the receptors. A large body of data supports the concept that GABA-A) receptors are the primary central nervous system target for barbiturates, including the finding that transgenic mice with a point mutation in the β3 GABA-A)-receptor subunit exhibit diminished sensitivity to the sedative and immobilizing actions of the anesthetic barbiturate pentobarbital. Although phenobarbital is only modestly less potent …


Adjunctive Perampanel For Refractory Partial-Onset Seizures. Randomized Phase Iii Study 304, Jacqueline A. French, Gregory L. Krauss, Victor Biton, David Squillacote, Haichen Yang, Antonio Laurenza, Dinesh Kumar, Michael A. Rogawski Aug 2012

Adjunctive Perampanel For Refractory Partial-Onset Seizures. Randomized Phase Iii Study 304, Jacqueline A. French, Gregory L. Krauss, Victor Biton, David Squillacote, Haichen Yang, Antonio Laurenza, Dinesh Kumar, Michael A. Rogawski

Michael A. Rogawski

Objective: To assess efficacy and safety of once-daily 8 or 12 mg perampanel, a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, when added to concomitant antiepileptic drugs (AEDs) in the treatment of drug-resistant partial-onset seizures. Methods:This was a multicenter, double-blind, placebo-controlled trial (ClinicalTrials.gov identifier: NCT00699972). Patients (≥12 years, with ongoing seizures despite 1–3 AEDs) were randomized (1:1:1) to once-daily perampanel 8 mg, 12 mg, or placebo. Following baseline (6 weeks), patients entered a 19-week double-blind phase: 6-week titration (2 mg/week increments to target dose) followed by a 13-week maintenance period. Percent change in seizure frequency was the primary endpoint; 50% responder …


Characterization Of Seizures Induced By Acute And Repeated Exposure To Tetramethylenedisulfotetramine, Dorota Zolkowska, Christopher N. Banks, Ashish Dhir, Bora Inceoglu, James R. Sanborn, Mark R. Mccoy, Donald A. Bruun, Bruce D. Hammock, Pamela J. Lein, Michael A. Rogawski Apr 2012

Characterization Of Seizures Induced By Acute And Repeated Exposure To Tetramethylenedisulfotetramine, Dorota Zolkowska, Christopher N. Banks, Ashish Dhir, Bora Inceoglu, James R. Sanborn, Mark R. Mccoy, Donald A. Bruun, Bruce D. Hammock, Pamela J. Lein, Michael A. Rogawski

Michael A. Rogawski

Tetramethylenedisulfotetramine (tetramine; TETS) is a potent convulsant poison that is considered to be a chemical threat agent. To provide a basis for the investigation of antidotes for TETS-induced seizures, we characterized the convulsant activity of TETS in mice and rats when administered by the intraperitoneal, intravenous, oral and intraventricular routes as a single acute dose and with repeated sublethal doses. In mice, parenteral and oral TETS caused immobility, myoclonic body jerks, clonic seizures of the forelimbs and/or hindlimbs, tonic seizures and death. The CD50 values for clonic and tonic seizures following oral administration were 0.11 and 0.22 mg/kg, respectively. Intraventricular …


Role Of Neurosteroids In The Anticonvulsant Activity Of Midazolam, Ashish Dhir, Michael A. Rogawski Mar 2012

Role Of Neurosteroids In The Anticonvulsant Activity Of Midazolam, Ashish Dhir, Michael A. Rogawski

Michael A. Rogawski

BACKGROUND AND PURPOSE Midazolam is a short-acting benzodiazepine that is widely used as an intravenous sedative and anticonvulsant. Besides interacting with the benzodiazepine site associated with GABA-A receptors, some benzodiazepines act as agonists of translocator protein (18 kDa) (TSPO) to enhance the synthesis of steroids, including neurosteroids with positive modulatory actions on GABA-A receptors. We sought to determine if neurosteroidogenesis induced by midazolam contributes to its anticonvulsant action. EXPERIMENTAL APPROACH Mice were pretreated with neurosteroid synthesis inhibitors and potentiators followed by midazolam or clonazepam, a weak TSPO ligand. Anticonvulsant activity was assessed with the intravenous pentylenetetrazol (PTZ) threshold test. KEY …


Propofol Hemisuccinate Suppresses Cortical Spreading Depression, Ashish Dhir, Christoph Lossin, Michael A. Rogawski Feb 2012

Propofol Hemisuccinate Suppresses Cortical Spreading Depression, Ashish Dhir, Christoph Lossin, Michael A. Rogawski

Michael A. Rogawski

Propofol is a rapidly acting water-insoluble non-barbiturate anesthetic agent that is widely used as an intravenous sedative-hypnotic agent. Anecdotal evidence indicates that propofol may be effective at terminating intractable migraine headache. Cortical spreading depression (CSD) is believed to be the neural correlate of migraine aura and may be a trigger for migraine pain. Agents that block the induction or slow the spread of CSD may be of utility in treating migraine. Here we examined the ability of propofol hemisuccinate (PHS), a water-soluble prodrug of propofol, to affect CSD in mice. For comparison, we examinined dizocilpine, an NMDA receptor antagonist, that …


Migraine And Epilepsy—Shared Mechanisms Within The Family Of Episodic Disorders, Michael A. Rogawski Dec 2011

Migraine And Epilepsy—Shared Mechanisms Within The Family Of Episodic Disorders, Michael A. Rogawski

Michael A. Rogawski

Migraine and epilepsy are episodic disorders that share many clinical features and underlying pathophysiological mechanisms. Cortical spreading depression (CSD), a wave of profound cellular depolarization, is believed to underlie migraine aura and to be a trigger for the headache pain in migraine. However, the initial event preceding CSD is cellular hyperexcitability associated with localized epileptiform discharges. Glutamate is a critical mediator of the hyperexcitability in both focal seizures and migraine. In focal epilepsy, seizure generation and spread is mediated by synaptically released glutamate acting on AMPA receptors, whereas triggering of CSD depends on NMDA receptors and spread does not require …


Neurosteroids—Endogenous Regulators Of Seizure Susceptibility And Role In The Treatment Of Epilepsy, Doodipala S. Reddy, Michael A. Rogawski Dec 2011

Neurosteroids—Endogenous Regulators Of Seizure Susceptibility And Role In The Treatment Of Epilepsy, Doodipala S. Reddy, Michael A. Rogawski

Michael A. Rogawski

Certain steroid hormone metabolites that have activity as modulators of GABA-A receptors but lack conventional hormonal effects—including allopregnanolone and allotetrahydrodeoxycorticosterone—are synthesized within the brain, predominantly in principle (excitatory) neurons, and also in peripheral tissues. At low concentrations, such neurosteroids potentiate GABA-A receptor currents, whereas at higher concentrations they directly activate the receptor; large magnitude effects occur on nonsynaptic delta subunit-containing GABA-A receptors that mediate tonic currents. GABA-A receptor modulatory neurosteroids confer seizure protection in diverse animal models, without tolerance during chronic administration. Endogenous neurosteroids may play a role in catamenial epilepsy, stress-induced changes in seizure susceptibility, temporal lobe epilepsy, and …


Mechanisms Of Action Of Antiseizure Drugs (Chapter 39), Roger J. Porter, Ashish Dhir, Robert L. Macdonald, Michael A. Rogawski Dec 2011

Mechanisms Of Action Of Antiseizure Drugs (Chapter 39), Roger J. Porter, Ashish Dhir, Robert L. Macdonald, Michael A. Rogawski

Michael A. Rogawski

No abstract provided.


Disclosure Of Clinical Trial Results When Product Development Is Abandoned, Michael A. Rogawski, Howard J. Federoff Sep 2011

Disclosure Of Clinical Trial Results When Product Development Is Abandoned, Michael A. Rogawski, Howard J. Federoff

Michael A. Rogawski

Currently, sponsors are not required to report the outcomes of clinical research on drugs or devices that do not lead to an approved product. Consequently, the public cannot benefit from scientific information derived from all failed or abandoned drugs and devices. Provisions in the U.S. Food and Drug Administration Amendments Act of 2007 provide an opportunity for the Department of Health and Human Services to rectify this situation. By reporting the results of clinical trials of abandoned products in a publicly accessible database and in the peer-reviewed journal literature, sponsors would satisfy a core ethical obligation of clinical research and …


11beta-Hydroxylase Inhibitors Protect Against Seizures In Mice By Increasing Endogenous Neurosteroid Synthesis, Rafal Kaminski, Michael Rogawski Jun 2011

11beta-Hydroxylase Inhibitors Protect Against Seizures In Mice By Increasing Endogenous Neurosteroid Synthesis, Rafal Kaminski, Michael Rogawski

Michael A. Rogawski

Steroid 11β-hydroxylase (CYP11B1; EC 1.14.15.4) is a mitochondrial enzyme located in the zona fasciculata of the adrenal cortex and also in the brain that mediates the conversion of 11-deoxycortisol to cortisol and 11-deoxycorticosterone (DOC) to corticosterone. Inhibitors of CYP11B1, such as metyrapone and etomidate, reduce glucocorticoid synthesis and raise levels of DOC providing greater availability for metabolic conversion to the GABA-A receptor modulating neurosteroid allotetrahydrodeoxycorticosterone (THDOC). Because THDOC is potent anticonvulsant, it is plausible that CYP11B1 inhibitors could protect against seizures. Here we demonstrate that metyrapone affords dose-dependent protection against 6-Hz seizures 30 min after injection (ED50, 191 mg/kg), but …


Revisiting Ampa Receptors As An Antiepileptic Drug Target, Michael A. Rogawski Feb 2011

Revisiting Ampa Receptors As An Antiepileptic Drug Target, Michael A. Rogawski

Michael A. Rogawski

In the 1990s there was intense interest in ionotropic glutamate receptors as therapeutic targets for diverse neurological disorders, including epilepsy. NMDA receptors were thought to play a key role in the generation of seizures, leading to clinical studies of NMDA receptor blocking drugs in epilepsy. Disappointing results dampened enthusiasm for ionotropic glutamate receptors as a therapeutic target. Eventually it became appreciated that another type of ionotropic glutamate receptor, the AMPA receptor, is actually the predominant mediator of excitatory neurotransmission in the central nervous system and moreover that AMPA receptors are critical to the generation and spread of epileptic activity. As …


Treatment Of Infantile Spasms: Emerging Insights From Clinical And Basic Science Perspectives, Carl Stafstrom, Barry Arnason, Tallie Baram, Anna Catania, Miguel Cortez, Tracy Glauser, Michael Pranzatelli, Raili Riikonen, Michael Rogawski, Shlomo Shinnar, John Swann Dec 2010

Treatment Of Infantile Spasms: Emerging Insights From Clinical And Basic Science Perspectives, Carl Stafstrom, Barry Arnason, Tallie Baram, Anna Catania, Miguel Cortez, Tracy Glauser, Michael Pranzatelli, Raili Riikonen, Michael Rogawski, Shlomo Shinnar, John Swann

Michael A. Rogawski

Infantile spasms is an epileptic encephalopathy of early infancy with specific clinical and electroencephalographic (EEG) features, limited treatment options, and a poor prognosis. Efforts to develop improved treatment options have been hindered by the lack of experimental models in which to test prospective therapies. The neuropeptide adrenocorticotropic hormone (ACTH) is effective in many cases of infantile spasms, although its mechanism(s) of action is unknown. This review describes the emerging candidate mechanisms that can underlie the therapeutic effects of ACTH in infantile spasms. These mechanisms can ultimately help to improve understanding and treatment of the disease. An overview of current treatments …


Seizure Protection By Intrapulmonary Delivery Of Propofol Hemisuccinate, Ashish Dhir, Dorota Zolkowska, Randall B. Murphy, Michael A. Rogawski Dec 2010

Seizure Protection By Intrapulmonary Delivery Of Propofol Hemisuccinate, Ashish Dhir, Dorota Zolkowska, Randall B. Murphy, Michael A. Rogawski

Michael A. Rogawski

The lung provides a portal of entry for drug delivery that could be used to administer anticonvulsant substances to prevent or abort seizures. Here we demonstrate that intrapulmonary propofol hemisucinate (PHS) rapidly confers seizure protection in various rodent chemoconvulsant models. Propofol is a powerful anticonvulsant substance at subanesthetic doses but it is a viscous, water-immiscible oil that is not suitable for intrapulmonary administration. We found that PHS can be formulated as an aqueous solution that is well tolerated when instilled into the lung. High dose intraperitoneal PHS induced loss-of-righting reflex in rats and mice. The onset of action of PHS …


Ganaxolone Suppression Of Behavioral And Electrographic Seizures In The Mouse Amygdala Kindling Model, Doodipala S. Reddy, Michael A. Rogawski Dec 2009

Ganaxolone Suppression Of Behavioral And Electrographic Seizures In The Mouse Amygdala Kindling Model, Doodipala S. Reddy, Michael A. Rogawski

Michael A. Rogawski

Ganaxolone (3alpha-hydroxy-3alpha-methyl-5alpha-pregnan-20-one), a synthetic analog of the endogenous neurosteroid allopregnanolone and a positive allosteric modulator of GABA-A receptors, may represent a new treatment approach for epilepsy. Here we demonstrate that pretreatment with ganaxolone (1.25—20 mg/kg, s.c.) causes a dose-dependent suppression of behavioral and electrographic seizures in fully amygdala-kindled female mice, with nearly complete seizure protection at the highest dose tested. The ED50 for suppression of behavioral seizures was 6.6 mg/kg. The seizure suppression produced by ganaxolone was comparable to that of clonazepam (ED50, 0.1 mg/kg, s.c.). To the extent that amygdala kindling represents a model of mesial temporal lobe epilepsy, …


Neurosteroids On The Epilepsy Chessboard — Keeping Seizures In Check, Michael A. Rogawski Dec 2009

Neurosteroids On The Epilepsy Chessboard — Keeping Seizures In Check, Michael A. Rogawski

Michael A. Rogawski

No abstract provided.


Treatment Of Early And Late Kainic-Acid Induced Status Epilepticus With The Non-Competitive Ampa Receptor Antagonist Gyki 52466, Brita Fritsch, Jeffrey J. Stott, J. Joelle Donofrio, Michael A. Rogawski Dec 2009

Treatment Of Early And Late Kainic-Acid Induced Status Epilepticus With The Non-Competitive Ampa Receptor Antagonist Gyki 52466, Brita Fritsch, Jeffrey J. Stott, J. Joelle Donofrio, Michael A. Rogawski

Michael A. Rogawski

Purpose: Benzodiazepines such as diazepam may fail to effectively treat status epilepticus because benzodiazepine-sensitive GABA-A receptors are internalized progressively with continued seizure activity. Ionotropic glutamate receptors, including AMPA receptors, are externalized, so that AMPA receptor antagonists, which are broad-spectrum anticonvulsants, could be more effective treatments for satus epilepticus. We assessed the ability of the non-competitive AMPA receptor antagonist GYKI 52466 to protect against kainic acid-induced status epilepticus in mice. Methods: Groups of animals treated with kainic acid received GYKI 52466 (50 mg/kg followed in 15 min by 50 mg/kg) or diazepam (25 mg/kg followed in 20 min by 12.5 mg/kg) …


Anticonvulsant And Proconvulsant Actions Of 2-Deoxy-D-Glucose, Maciej Gasior, Jessica Yankura, Adam L. Hartman, Amy French, Michael A. Rogawski Dec 2009

Anticonvulsant And Proconvulsant Actions Of 2-Deoxy-D-Glucose, Maciej Gasior, Jessica Yankura, Adam L. Hartman, Amy French, Michael A. Rogawski

Michael A. Rogawski

Purpose: 2-Deoxy-D-glucose (2-DG), a glucose analog that accumulates in cells and interferes with carbohydrate metabolism by inhibiting glycolytic enzymes, has anticonvulsant actions. Recognizing that severe glucose deprivation can induce seizures, we sought to determine whether acute treatment with 2-DG can promote seizure susceptibility by assessing its effects on seizure threshold. For comparison, we studied 3-methyl-glucose (3-MG), which like 2-DG accumulates in cells and reduces glucose uptake, but does not inhibit glycolysis. Methods: Mice were treated with 2-DG or 3-MG and the seizure threshold determined in the 6-Hz test, the mouse electroshock seizure threshold (MEST) test, and the intravenous pentylenetetrazol (i.v. …


Neurosteroid Replacement Therapy For Catamenial Epilepsy, Doodipala S. Reddy, Michael A. Rogawski Apr 2009

Neurosteroid Replacement Therapy For Catamenial Epilepsy, Doodipala S. Reddy, Michael A. Rogawski

Michael A. Rogawski

Perimenstural catamenial epilepsy, the cyclical occurrence of seizure exacerbations near the time of menstruation, affects a high proportion of women of reproductive age with drug refractory epilepsy. Enhanced seizure susceptibility in perimenstrual catamenial epilepsy is believed to be due to the withdrawal of the progesterone-derived GABA-A receptor modulating neurosteroid allopregnanolone as a result of the fall in progesterone at the time of menstruation. Studies in a rat pseudopregnancy model of catamenial epilepsy indicate that following neurosteroid withdrawal there is enhanced susceptibility to chemoconvulsant seizures. There is also a transitory increase in the frequency of spontaneous seizures in epleptic rats that …


Nontraditional Epilepsy Treatment Approaches, Michael A. Rogawski, Gregory L. Holmes Mar 2009

Nontraditional Epilepsy Treatment Approaches, Michael A. Rogawski, Gregory L. Holmes

Michael A. Rogawski

Overview of articles published in a special issue of Neurotherapeutics (April 2009) on nontraditional (non-drug) epilepsy treatment approaches. From the Fourth Workshop on New Horizons in the Development of Antiepileptic Drugs: Nontraditional Approaches to Treat Epilepsy, which was held at the Clontarf Castle, Dublin, March 5-7, 2008.


Convection-Enhanced Delivery In The Treatment Of Epilepsy, Michael A. Rogawski Mar 2009

Convection-Enhanced Delivery In The Treatment Of Epilepsy, Michael A. Rogawski

Michael A. Rogawski

Convection-enhanced delivery (CED) is a novel drug-delivery technique that uses positive hydrostatic pressure to deliver a fluid containing a therapeutic substance by bulk flow directly into the interstitial space within a localized region of the brain parenchyma. CED circumvents the blood-brain barrier and provides a wider, more homogenous distribution than bolus deposition (focal injection) or other diffusion-based delivery approaches. A potential use of CED is for the local delivery of antiseizure agents, which would provide an epilepsy treatment approach that avoids the systemic toxicities of orally administered anti-epileptic drugs and bystander effects on nonepileptic brain regions. Recent studies have demonstrated …


Topiramate Reduces Excitability In The Basolateral Amygdala By Selectively Inhibiting Gluk1 (Glur5) Kainate Receptors On Interneurons And Positively Modulating Gaba-A Receptors On Principal Neurons, Maria Braga, Vassiliki Aroniadou-Anderjaska, He Li, Michael Rogawski Dec 2008

Topiramate Reduces Excitability In The Basolateral Amygdala By Selectively Inhibiting Gluk1 (Glur5) Kainate Receptors On Interneurons And Positively Modulating Gaba-A Receptors On Principal Neurons, Maria Braga, Vassiliki Aroniadou-Anderjaska, He Li, Michael Rogawski

Michael A. Rogawski

Topiramate [2,3:4,5-bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate] is a structurally novel antiepileptic drug that has broad efficacy in epilepsy, but the mechanisms underlying its therapeutic activity are not fully understood. We have found that topiramate selectively inhibits GluK1 (GluR5) kainate receptor-mediated excitatory postsynaptic responses in rat basolateral amygdala (BLA) principal neurons and protects against seizures induced by the GluK1 kainate receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA). Here, we demonstrate that topiramate also modulates inhibitory function in the BLA. Using whole-cell recordings in rat amygdala slices, we found that 0.3 to 10 microM topiramate 1) inhibited ATPA-evoked postsynaptic currents recorded from BLA interneurons; 2) suppressed ATPA-induced …


Pathological Alterations In Gabaergic Interneurons And Reduced Tonic Inhibition In The Basolateral Amygdala During Epileptogenesis, Michael A. Rogawski, Brita Fritsch, Felicia Qashu, T. H. Figueiredo, Vicki Aroniadou-Anderjaska, Maria F.M. Braga Dec 2008

Pathological Alterations In Gabaergic Interneurons And Reduced Tonic Inhibition In The Basolateral Amygdala During Epileptogenesis, Michael A. Rogawski, Brita Fritsch, Felicia Qashu, T. H. Figueiredo, Vicki Aroniadou-Anderjaska, Maria F.M. Braga

Michael A. Rogawski

An acute brain insult such as traumatic head/brain injury, stroke, or an episode of status epilepticus can trigger epileptogenesis, which, after a latent, seizure-free period, leads to epilepsy. The discovery of effective pharmacological interventions that can prevent the development of epilepsy requires knowledge of the alterations that occur during epileptogenesis in brain regions that play a central role in the induction and expression of epilepsy. In the present study, we investigated pathological alterations in GABAergic interneurons in the rat basolateral amygdala (BLA), and the functional impact of these alterations on inhibitory synaptic transmission, on days 7 to 10 after status …


Intrinsic Severity As A Determinant Of Antiepileptic Drug Refractoriness, Michael A. Rogawski, Michael R. Johnson Sep 2008

Intrinsic Severity As A Determinant Of Antiepileptic Drug Refractoriness, Michael A. Rogawski, Michael R. Johnson

Michael A. Rogawski

For the most part, resistance to medications in epilepsy is independent of the choice of antiepileptic drug. This simple clinical observation constrains the possible biological mechanisms for drug refractory epilepsy by imposing a requirement to explain resistance for a diverse set of chemical structures that act on an even more varied group of molecular targets. To date, research on antiepileptic drug refractoriness has been guided by the “drug transporter overexpression” and the “reduced drug-target sensitivity” hypotheses. These concepts posit that drug refractoriness is a condition separate from the underlying epilepsy. Inadequacies in both hypotheses mandate a fresh approach to the …