Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Medical Biochemistry

Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang Jan 2022

Interplay Between An Atp-Binding Cassette F Protein And The Ribosome From Mycobacterium Tuberculosis, Zhicheng Cui, Xiaojun Li, Joonyoung Shin, Howard Gamper, Ya-Ming Hou, James C Sacchettini, Junjie Zhang

Department of Biochemistry and Molecular Biology Faculty Papers

EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the …


Structural Basis For +1 Ribosomal Frameshifting During Ef-G-Catalyzed Translocation., Gabriel Demo, Howard Gamper, Anna B. Loveland, Isao Masuda, Christine E. Carbone, Egor Svidritskiy, Ya-Ming Hou, Andrei A. Korostelev Jul 2021

Structural Basis For +1 Ribosomal Frameshifting During Ef-G-Catalyzed Translocation., Gabriel Demo, Howard Gamper, Anna B. Loveland, Isao Masuda, Christine E. Carbone, Egor Svidritskiy, Ya-Ming Hou, Andrei A. Korostelev

Department of Biochemistry and Molecular Biology Faculty Papers

Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near …


Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon Jan 2021

Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon

Department of Biochemistry and Molecular Biology Faculty Papers

The tumor suppressor p53 integrates stress response pathways by selectively engaging one of several potential transcriptomes, thereby triggering cell fate decisions (e.g., cell cycle arrest, apoptosis). Foundational to this process is the binding of tetrameric p53 to 20-bp response elements (REs) in the genome (RRRCWWGYYYN0-13RRRCWWGYYY). In general, REs at cell cycle arrest targets (e.g. p21) are of higher affinity than those at apoptosis targets (e.g., BAX). However, the RE sequence code underlying selectivity remains undeciphered. Here, we identify molecular mechanisms mediating p53 binding to high- and low-affinity REs by showing that key determinants of the code are embedded …


Insights Into Genome Recoding From The Mechanism Of A Classic +1-Frameshifting Trna., Howard Gamper, Haixing Li, Isao Masuda, D. Miklos Robkis, Thomas Christian, Adam B. Conn, Gregor Blaha, E. James Petersson, Ruben L. Gonzalez, Ya-Ming Hou Jan 2021

Insights Into Genome Recoding From The Mechanism Of A Classic +1-Frameshifting Trna., Howard Gamper, Haixing Li, Isao Masuda, D. Miklos Robkis, Thomas Christian, Adam B. Conn, Gregor Blaha, E. James Petersson, Ruben L. Gonzalez, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 …


Changing Diagnostic Methods And Increased Detection Of Verotoxigenic Escherichia Coli, Ireland, Thomas Rice, Noreen Quinn, Roy D. Sleator, Brigid Lucey Sep 2016

Changing Diagnostic Methods And Increased Detection Of Verotoxigenic Escherichia Coli, Ireland, Thomas Rice, Noreen Quinn, Roy D. Sleator, Brigid Lucey

Department of Biological Sciences Publications

The recent paradigm shift in infectious disease diagnosis from culture-based to molecular-based approaches is exemplified in the findings of a national study assessing the detection of verotoxigenic Escherichia coli infections in Ireland. The methodologic changes have been accompanied by a dramatic increase in detections of non-O157 verotoxigenic E. coli serotypes.


Atomic Structure Of Grk5 Reveals Distinct Structural Features Novel For G Protein-Coupled Receptor Kinases, Konstantin E. Komolov, Anshul Bhardwaj, Jeffrey L. Benovic Aug 2015

Atomic Structure Of Grk5 Reveals Distinct Structural Features Novel For G Protein-Coupled Receptor Kinases, Konstantin E. Komolov, Anshul Bhardwaj, Jeffrey L. Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5'-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly …


The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger Aug 2015

The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger

Department of Biochemistry and Molecular Biology Faculty Papers

Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.


Diversification Of Importin-Α Isoforms In Cellular Trafficking And Disease States., Ruth A. Pumroy, Gino Cingolani Feb 2015

Diversification Of Importin-Α Isoforms In Cellular Trafficking And Disease States., Ruth A. Pumroy, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific …


Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole Jul 2012

Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR …


Regulation Of A Duplicated Locus: Drosophila Sloppy Paired Is Replete With Functionally Overlapping Enhancers., Miki Fujioka, James B Jaynes Feb 2012

Regulation Of A Duplicated Locus: Drosophila Sloppy Paired Is Replete With Functionally Overlapping Enhancers., Miki Fujioka, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

In order to investigate regulation and redundancy within the sloppy paired (slp) locus, we analyzed 30 kilobases of DNA encompassing the tandem, coordinately regulated slp1 and slp2 transcription units. We found a remarkable array of stripe enhancers with overlapping activities surrounding the slp1 transcription unit, and, unexpectedly, glial cell enhancers surrounding slp2. The slp stripe regulatory region generates 7 stripes at blastoderm, and later 14 stripes that persist throughout embryogenesis. Phylogenetic analysis among drosophilids suggests that the multiplicity of stripe enhancers did not evolve through recent duplication. Most of the direct integration among cis-regulatory modules appears to be simply additive, …


Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan Jun 2011

Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan

Department of Biochemistry and Molecular Biology Faculty Papers

ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts …


Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou Dec 2010

Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Trm5 is a eukaryal and archaeal tRNA methyltransferase that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to the N(1) position of G37 directly 3' to the anticodon. While the biological role of m(1)G37 in enhancing translational fidelity is well established, the catalytic mechanism of Trm5 has remained obscure. To address the mechanism of Trm5 and more broadly the mechanism of N-methylation to nucleobases, we examined the pH-activity profile of an archaeal Trm5 enzyme, and performed structure-guided mutational analysis. The data reveal a marked dependence of enzyme-catalyzed methyl transfer on hydrogen ion equilibria: the single-turnover rate constant for methylation increases by one …


Control Of Catalytic Cycle By A Pair Of Analogous Trna Modification Enzymes., Thomas Christian, Georges Lahoud, Cuiping Liu, Ya-Ming Hou Jul 2010

Control Of Catalytic Cycle By A Pair Of Analogous Trna Modification Enzymes., Thomas Christian, Georges Lahoud, Cuiping Liu, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at …


Control Of Catalytic Cycle By A Pair Of Analogous Trna Modification Enzymes., Thomas Christian, Georges Lahoud, Cuiping Liu, Ya-Ming Hou Jul 2010

Control Of Catalytic Cycle By A Pair Of Analogous Trna Modification Enzymes., Thomas Christian, Georges Lahoud, Cuiping Liu, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at …


Ribosome Recycling Step In Yeast Cytoplasmic Protein Synthesis Is Catalyzed By Eef3 And Atp., Shinya Kurata, Klaus H Nielsen, Sarah F Mitchell, Jon R Lorsch, Akira Kaji, Hideko Kaji Jun 2010

Ribosome Recycling Step In Yeast Cytoplasmic Protein Synthesis Is Catalyzed By Eef3 And Atp., Shinya Kurata, Klaus H Nielsen, Sarah F Mitchell, Jon R Lorsch, Akira Kaji, Hideko Kaji

Department of Biochemistry and Molecular Biology Faculty Papers

After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated …


Structure Of Vibrio Cholerae Toxt Reveals A Mechanism For Fatty Acid Regulation Of Virulence Genes, Michael J. Lowden, Karen Skorupski, Maria Pellegrini, Michael G. Chiorazzo, Ronald K. Taylor, F. Jon Kull Feb 2010

Structure Of Vibrio Cholerae Toxt Reveals A Mechanism For Fatty Acid Regulation Of Virulence Genes, Michael J. Lowden, Karen Skorupski, Maria Pellegrini, Michael G. Chiorazzo, Ronald K. Taylor, F. Jon Kull

Dartmouth Scholarship

Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 A resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that …


R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala Jul 2009

R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala

Department of Dermatology and Cutaneous Biology Faculty Papers

We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant …


Neutralization Of Botulinum Neurotoxin By A Human Monoclonal Antibody Specific For The Catalytic Light Chain., Sharad P Adekar, Tsuyoshi Takahashi, R Mark Jones, Fetweh H Al-Saleem, Denise M Ancharski, Michael J Root, B P Kapadnis, Lance L Simpson, Scott K Dessain Aug 2008

Neutralization Of Botulinum Neurotoxin By A Human Monoclonal Antibody Specific For The Catalytic Light Chain., Sharad P Adekar, Tsuyoshi Takahashi, R Mark Jones, Fetweh H Al-Saleem, Denise M Ancharski, Michael J Root, B P Kapadnis, Lance L Simpson, Scott K Dessain

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.

METHODS AND FINDINGS: We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for …


Characterization Of Hard2, A Processed Hard1 Gene Duplicate, Encoding A Human Protein N-Alpha-Acetyltransferase., Thomas Arnesen, Matthew J Betts, Frédéric Pendino, David A Liberles, Dave Anderson, Jaime Caro, Xianguo Kong, Jan E Varhaug, Johan R Lillehaug Jan 2006

Characterization Of Hard2, A Processed Hard1 Gene Duplicate, Encoding A Human Protein N-Alpha-Acetyltransferase., Thomas Arnesen, Matthew J Betts, Frédéric Pendino, David A Liberles, Dave Anderson, Jaime Caro, Xianguo Kong, Jan E Varhaug, Johan R Lillehaug

Department of Medicine Faculty Papers

BACKGROUND: Protein acetylation is increasingly recognized as an important mechanism regulating a variety of cellular functions. Several human protein acetyltransferases have been characterized, most of them catalyzing epsilon-acetylation of histones and transcription factors. We recently described the human protein acetyltransferase hARD1 (human Arrest Defective 1). hARD1 interacts with NATH (N-Acetyl Transferase Human) forming a complex expressing protein N-terminal alpha-acetylation activity. RESULTS: We here describe a human protein, hARD2, with 81 % sequence identity to hARD1. The gene encoding hARD2 most likely originates from a eutherian mammal specific retrotransposition event. hARD2 mRNA and protein are expressed in several human cell lines. …


Molecular Cloning And Sequence Analysis Of The Plasmodium Falciparum Dihydrofolate Reductase-Thymidylate Synthase Gene., David J. Bzik, Wu-Bo Li, Toshihiro Horii, Joseph Inselburg Dec 1987

Molecular Cloning And Sequence Analysis Of The Plasmodium Falciparum Dihydrofolate Reductase-Thymidylate Synthase Gene., David J. Bzik, Wu-Bo Li, Toshihiro Horii, Joseph Inselburg

Dartmouth Scholarship

Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction sequence to the TS domain in the carboxyl-terminal portion of the protein. The TS domain was more conserved than the DHFR domain and both P. falciparum domains …