Open Access. Powered by Scholars. Published by Universities.®

Biomedical and Dental Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical and Dental Materials

Synthesis And Self-Assembly Of Amphiphilic Block Copolymers For The Fabrication Of Non-Spherical Polymersomes, Tamuka Chidanguro May 2021

Synthesis And Self-Assembly Of Amphiphilic Block Copolymers For The Fabrication Of Non-Spherical Polymersomes, Tamuka Chidanguro

Dissertations

Polymersomes, also known as polymer vesicles, have gained a lot of interest over the past two decades. These hollow spherical systems are made via the self-assembly of amphiphilic block copolymers and have found use in a range of areas from drug delivery, to cellular models, to nanoreactors. Their hollow nature allows them to carry hydrophilic cargo in their inner compartment and hydrophobic cargo in their membrane. Over the last decade, increasing efforts have focused on controlling the morphology of polymersomes. Research has shown that polymersome morphology plays an important role for instance in drug delivery, where tubular or rod-like vesicles …


Assessment Of The Use Of Low Molecular Weight Diblock Copolymers For The Formation Of Stable, Tunable Droplet Interface Bilayers, Joseph Tawfik Dec 2020

Assessment Of The Use Of Low Molecular Weight Diblock Copolymers For The Formation Of Stable, Tunable Droplet Interface Bilayers, Joseph Tawfik

Masters Theses

This thesis presents the use of diblock copolymers, poly(butadiene)-b-poly(ethylene oxide) (PBm PEOn) and poly(isoprene)-b-poly(ethylene oxide) (PImPEOn), as amphiphilic molecular building blocks for the formation of synthetic polymer bilayer membranes using the droplet interface bilayer (DIB) technique. The DIB technique makes use of the self-assembly of amphiphilic macromolecules along oil-water droplet interfaces that can then be physically connected for the construction of liquid supported macromolecular bilayers at the droplet interface. These bilayer membranes are capable of hosting both naturally occurring and synthetic protein channels. This technique has been used to form synthetic bilayer membranes …


Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly Sep 2019

Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly

Dissertations, Theses, and Capstone Projects

The potency and specificity of bioactive peptides have propelled these agents to the forefront of pharmacological research. However, delivery of peptides to their molecular target in cells is a major obstacle to their widespread application. A Trojan Horse strategy of packaging a bioactive peptide within a modified protein cage to protect it during transport, and releasing it at the target site, is a promising delivery method. Recent work has demonstrated that the viral capsid of the P22 bacteriophage can be loaded with an arbitrary, genetically-encoded peptide, and externally decorated with a cell-penetrating peptide, such as HIV-Tat, to translocate across in …


Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings Jun 2018

Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings

Honors Scholar Theses

Observing and designing the in vivo distribution and localization of therapeutic nanoparticles is an essential aspect of developing and understanding novel nanoparticle- based medical treatments. This study investigates novel PEGylated Iodine-based nanoparticles (INPs), an alternate composition to the more widely researched gold nanoparticles (AuNPs), which may help avoid adverse effects associated with AuNPs, such as potential toxicity and skin discoloration, when used in similar applications. Determining the localization of the novel INPs within murine brains containing human glioma U-1242MG cells is critical in assisting the development of radiation dose enhancement therapy for this aggressive cancer. Radiation dose enhancement utilizes the …