Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Amino Acids, Peptides, and Proteins

Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari Oct 2013

Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari

Dartmouth Scholarship

One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killer FLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using …


Evaluation Of Cholera Vaccines Formulated With Toxin-Coregulated Pilin Peptide Plus Polymer Adjuvant In Mice, Jia-Yan Wu, William F. Wade, Ronald K. Taylor Dec 2001

Evaluation Of Cholera Vaccines Formulated With Toxin-Coregulated Pilin Peptide Plus Polymer Adjuvant In Mice, Jia-Yan Wu, William F. Wade, Ronald K. Taylor

Dartmouth Scholarship

Cholera is an acute diarrheal disease that is caused by the gram-negative bacterium Vibrio cholerae. The low efficacy of currently available killed-whole-cell vaccines and the reactinogenicity coupled with potential reversion of live vaccines have thus far precluded widespread vaccination for the control of cholera. Recent studies on the molecular nature of the virulence components that contribute to V. cholerae pathogenesis have provided insights into possible approaches for the development of a defined subunit cholera vaccine. Genetic analysis has demonstrated that the toxin-coregulated pilus (TCP) is the major factor that contributes to colonization of the human intestine by V. cholerae. In …