Open Access. Powered by Scholars. Published by Universities.®

Respiratory System Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Respiratory System

Activation Of Cannabinoid-2 Receptor Protects Against Pseudomonas Aeruginosa Induced Acute Lung Injury And Inflammation, Nagaraja Nagre, Gregory Nicholson, Xiaofei Cong, Janette Lockett, Andrew C. Pearson, Vincent Chan, Woong-Ki Kim, K. Yaragudri Vinod, John D. Catravas Jan 2022

Activation Of Cannabinoid-2 Receptor Protects Against Pseudomonas Aeruginosa Induced Acute Lung Injury And Inflammation, Nagaraja Nagre, Gregory Nicholson, Xiaofei Cong, Janette Lockett, Andrew C. Pearson, Vincent Chan, Woong-Ki Kim, K. Yaragudri Vinod, John D. Catravas

Bioelectrics Publications

Background

Bacterial pneumonia is a major risk factor for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Pseudomonas aeruginosa (PA), an opportunistic pathogen with an increasing resistance acquired against multiple drugs, is one of the main causative agents of ALI and ARDS in diverse clinical settings. Given the anti-inflammatory role of the cannabinoid-2 receptor (CB2R), the effect of CB2R activation in the regulation of PA-induced ALI and inflammation was tested in a mouse model as an alternative to conventional antibiotic therapy.

Methods

In order to activate CB2R, a selective synthetic agonist, JWH133, was administered intraperitoneally (i.p.) to C57BL/6J …


Coculture Of Staphylococcus Aureus With Pseudomonas Aeruginosa Drives S. Aureus Towards Fermentative Metabolism And Reduced Viability In A Cystic Fibrosis Model, Laura M. Filkins, Jyoti A. Graber, Daniel G. Olson, Emily L. Dolben, Lee Lynd, Sabin Bhuju, George A. O'Toole Apr 2015

Coculture Of Staphylococcus Aureus With Pseudomonas Aeruginosa Drives S. Aureus Towards Fermentative Metabolism And Reduced Viability In A Cystic Fibrosis Model, Laura M. Filkins, Jyoti A. Graber, Daniel G. Olson, Emily L. Dolben, Lee Lynd, Sabin Bhuju, George A. O'Toole

Dartmouth Scholarship

The airways of patients with cystic fibrosis are colonized with diverse bacterial communities that change dynamically during pediatric years and early adulthood. Staphylococcus aureus is the most prevalent pathogen during early childhood, but during late teens and early adulthood, a shift in microbial composition occurs leading to Pseudomonas aeruginosa community predominance in ∼50% of adults. We developed a robust dual-bacterial in vitro coculture system of P. aeruginosa and S. aureus on monolayers of human bronchial epithelial cells homozygous for the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mutation to better model the mechanisms of this interaction. We show that P. …


Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair Aug 2013

Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair

Dartmouth Scholarship

The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature's repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, ac


Gbdr Regulates Pseudomonas Aeruginosa Plch And Pchp Transcription In Response To Choline Catabolites, Matthew J. Wargo, Tiffany C. Ho, Maegan J. Gross, Laurie A. Whittaker, Deborah A. Hogan Dec 2009

Gbdr Regulates Pseudomonas Aeruginosa Plch And Pchp Transcription In Response To Choline Catabolites, Matthew J. Wargo, Tiffany C. Ho, Maegan J. Gross, Laurie A. Whittaker, Deborah A. Hogan

Dartmouth Scholarship

Pseudomonas aeruginosa hemolytic phospholipase C, PlcH, can degrade phosphatidylcholine (PC) and sphingomyelin in eukaryotic cell membranes and extracellular PC in lung surfactant. Numerous studies implicate PlcH in P. aeruginosa virulence. The phosphorylcholine released by PlcH activity on phospholipids is hydrolyzed by a periplasmic phosphorylcholine phosphatase, PchP. Both plcH gene expression and PchP enzyme activity are positively regulated by phosphorylcholine degradation products, including glycine betaine. Here we report that the induction of plcH and pchP transcription by glycine betaine is mediated by GbdR, an AraC family transcription factor. Mutants that lack gbdR are unable to induce plcH and pchP in media …


In Vitro Analysis Of Tobramycin-Treated Pseudomonas Aeruginosa Biofilms On Cystic Fibrosis-Derived Airway Epithelial Cells, Gregory G. Anderson, Sophie Moreau-Marquis, Bruce A. Stanton, George A. O'Toole Jan 2008

In Vitro Analysis Of Tobramycin-Treated Pseudomonas Aeruginosa Biofilms On Cystic Fibrosis-Derived Airway Epithelial Cells, Gregory G. Anderson, Sophie Moreau-Marquis, Bruce A. Stanton, George A. O'Toole

Dartmouth Scholarship

P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis …


The Flagellum Of Pseudomonas Aeruginosa Is Required For Resistance To Clearance By Surfactant Protein A, Shiping Zhang, Francis X. Mccormack, Roger C. Levesque, George A. O'Toole, Gee W. Lau Jun 2007

The Flagellum Of Pseudomonas Aeruginosa Is Required For Resistance To Clearance By Surfactant Protein A, Shiping Zhang, Francis X. Mccormack, Roger C. Levesque, George A. O'Toole, Gee W. Lau

Dartmouth Scholarship

Surfactant protein A (SP-A) is an important lung innate immune protein that kills microbial pathogens by opsonization and membrane permeabilization. We investigated the basis of SP-A-mediated pulmonary clearance of Pseudomonas aeruginosa using genetically-engineered SP-A mice and a library of signature-tagged P. aeruginosa mutants. A mutant with an insertion into flgE, the gene that encodes flagellar hook protein, was preferentially cleared by the SP-A(+/+) mice, but survived in the SP-A(-/-) mice. Opsonization by SP-A did not play a role in flgE clearance. However, exposure to SP-A directly permeabilized and killed the flgE mutant, but not the wild-type parental strain. P. aeruginosa …