Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular and Cellular Neuroscience

Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak Jan 2019

Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak

Honors Undergraduate Theses

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an X-linked late-onset neurodegenerative disorder caused by a noncoding trinucleotide repeat expansion in the FMR1 gene. This gene produces fragile x mental retardation protein (FMRP), an RNA binding protein whose targets are involved in brain development and synaptic plasticity. One of the proposed mechanisms of FXTAS pathogenesis is an RNA gain-of-function in which the repeat expansion causes toxic mRNA that sequesters important proteins in the cell, interfering with their functions. Another suggested method of pathogenesis is through a mutant protein called FMRpolyG. This protein results from repeat-associated non-AUG (RAN) translation, in which the expanded …


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …