Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

635 Full-Text Articles 1173 Authors 80376 Downloads 70 Institutions

All Articles in Molecular and Cellular Neuroscience

Faceted Search

635 full-text articles. Page 1 of 24.

Neuronal Degeneration And Short-Term Memory Impairment After Tbi, Obiamaraije Igwe 2017 University of Louisville

Neuronal Degeneration And Short-Term Memory Impairment After Tbi, Obiamaraije Igwe

Posters-at-the-Capitol

Traumatic brain injury (TBI) was associated with impaired short-term memory with causes of vehicle accidents and falls. Protein plaques containing fibrinogen (Fg), are associated with memory loss. After TBI, Fg in blood was higher than normal (>~2 mg/ml), which resulted in increased Fg in extravascular space. Therefore, Fg bonded to its endothelial receptor intercellular adhesion molecule-1 (ICAM-1). Fg then interacted with cellular prion protein (PrPC), which had a strong effect on the loss of memory and cognition. Mechanisms of Fg and PrPC complex formation and its functional implication are not known. This present study tested the level of Fg-PrPC ...


Spinal Cord Injury Disrupts Circadian Rhythms In Rats, Emily M. Bateman 2017 University of Colorado Boulder

Spinal Cord Injury Disrupts Circadian Rhythms In Rats, Emily M. Bateman

Psychology and Neuroscience Undergraduate Contributions

Traumatic spinal cord injury affects 282,000 people in the United States alone. Individuals often suffer from partial paralysis and chronic pain along with physiological impairments, such as abnormal thermoregulation, decreased motor function, and poor sleep quality. Current clinical therapies focus on symptomatic treatments. Despite extensive research, all of the physiologic effects and the molecular mechanism underlying spinal cord injury, and how they affect each other, remains elusive. Here, we tested whether spinal cord injury disrupted circadian rhythms, which could prolong the recovery process. We used implanted transmitters in male and female rats to measure a marker, body temperature, and ...


Social Status Modulates Restraint- Induced Neural Activity In Brain Regions Controlling Stress Vulnerability , Sahba Seddighi, Matthew A. Cooper 2017 University of Tennessee, Knoxville

Social Status Modulates Restraint- Induced Neural Activity In Brain Regions Controlling Stress Vulnerability , Sahba Seddighi, Matthew A. Cooper

Haslam Scholars Projects

Understanding the cellular mechanisms that control resistance and vulnerability to stress is an important step toward identifying novel targets for the prevention and treatment of stress-related mental illness. Dominant and subordinate animals have been shown to exhibit different behavioral and physiological responses to stress, with dominants often showing stress resistance and subordinates often showing stress vulnerability. We have previously found that dominant hamsters exhibit reduced social avoidance following social defeat stress compared to subordinate hamsters, although the extent to which stress resistance in dominants generalizes to non-social stressors is unknown. In this study, dominant, subordinate, and control male Syrian hamsters ...


Machine Learning Analysis Identifies Drosophila Grunge/Atrophin As An Important Learning And Memory Gene Required For Memory Retention And Social Learning, Balint Kacsoh 2017 Illinois State University

Machine Learning Analysis Identifies Drosophila Grunge/Atrophin As An Important Learning And Memory Gene Required For Memory Retention And Social Learning, Balint Kacsoh

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis 2017 The Graduate Center, City University of New York

Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

Inflammation plays a major role in Alzheimer’s disease (AD). Investigating how specific mediators of inflammation contribute to neurodegeneration in AD is crucial. Our studies focused on cyclooxygenases, which are key enzymes in inflammation and highly relevant to AD. Cyclooxygenases (COX -1, constitutive; COX-2, inducible) have emerged as important determinants of AD pathogenesis and progression. COX-2 is highly induced in AD, correlating with AD severity, and COX-1 is also involved in AD. Cyclooxygenases are the rate-limiting enzymes that convert arachidonic acid into prostaglandins (PGs), the principal mediators of CNS neuroinflammation.

The overall GOAL of these studies was to address the ...


C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl Eggers, Noelle L’Etoile, Laura Miller Conrad, Miri VanHoven 2017 San Jose State University

C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl Eggers, Noelle L’Etoile, Laura Miller Conrad, Miri Vanhoven

Faculty Publications, Chemistry

Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic ...


C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen T. O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Y. Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl K. Eggers, Noelle L’Etoile, Laura C. Miller Conrad, Miri VanHoven 2017 San Jose State University

C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen T. O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Y. Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl K. Eggers, Noelle L’Etoile, Laura C. Miller Conrad, Miri Vanhoven

Miri VanHoven

Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic ...


C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen T. O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Y. Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl K. Eggers, Noelle L’Etoile, Laura C. Miller Conrad, Miri VanHoven 2017 San Jose State University

C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen T. O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Y. Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl K. Eggers, Noelle L’Etoile, Laura C. Miller Conrad, Miri Vanhoven

Daryl K. Eggers

Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic ...


Amelioration Of Prenatal Alcohol Effects By Environmental Enrichment In A Mouse Model Of Fasd, Aniruddho Chokroborty-Hoque 2017 The University of Western Ontario

Amelioration Of Prenatal Alcohol Effects By Environmental Enrichment In A Mouse Model Of Fasd, Aniruddho Chokroborty-Hoque

Electronic Thesis and Dissertation Repository

Maternal alcohol consumption during pregnancy results in a spectrum of behavioural and cognitive deficits collectively known as Fetal Alcohol Spectrum Disorders (FASD). Currently, little is know about if and how the external environment may modulate these deficits. I have used C57BL/6 mice to study this interaction between prenatal alcohol exposure and the postnatal environment. Alcohol exposure during synaptogenesis produces high levels of anxiety-like traits and decreased memory performance. Alcohol-exposed mice (and matched unexposed controls) were put in 'environmentally-enriched' conditions of voluntary exercise, physical activities and cognitive stimulation to ascertain the effects of a positive postnatal environment. The results show ...


Evolution Of Caffeine Biosynthetic Enzymes And Pathways In Flowering Plants, Ruiqi Huang 2017 Western Michigan University

Evolution Of Caffeine Biosynthetic Enzymes And Pathways In Flowering Plants, Ruiqi Huang

Dissertations

Convergent evolution generally refers to the independent evolution of similar biological function more than once in unrelated species. Caffeine is thought to have evolved by convergence, and is naturally produced through secondary metabolism in plants to defend against pathogen attack and insect feeding or to attract pollinators. The same caffeine biosynthetic pathway has been elucidated in Camellia (tea) and Coffea (coffee), in which xanthosine is sequentially methylated to caffeine via 7-methylxanthine and theobromine. However, although the same catalysis pathway is used, different (paralogous) enzymes in the SAMT/BAMT/theobromine synthase (SABATH) multigene family are used in the two species. In ...


Elucidating Mechanisms Of Protein Aggregation In Alzheimer’S Disease Using Antibody-Based Strategies., Benjamin A. Colvin 2017 University of Missouri - St. Louis

Elucidating Mechanisms Of Protein Aggregation In Alzheimer’S Disease Using Antibody-Based Strategies., Benjamin A. Colvin

Dissertations

Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder. There are two characteristic histopathological hallmarks in the brain: senile plaques and neurofibrillary tangles, composed of insoluble aggregates of the amyloids Amyloid-β (Aβ) and tau protein, respectively. These diagnostic markers, though distinctive, are not apparent effectors of AD pathology. Evidence has mounted suggesting smaller soluble aggregates (oligomers) of Aβ or tau are the true drivers of disease progression. This dissertation presents several amyloid biophysics projects. Aggregate biophysical parameters such as weight, shape, and conformation were measured using a range of methodologies, including Multiangle Light Scattering, Dynamic Light Scattering, UV-Circular Dichroism, UV-Fluorescence ...


Dynamic Control Of Dendritic Mrna Expression By Cnot7 Regulates Synaptic Efficacy And Higher Cognitive Function, Rhonda L. McFleder, Fernanda Mansur, Joel D. Richter 2017 University of Massachusetts Medical School

Dynamic Control Of Dendritic Mrna Expression By Cnot7 Regulates Synaptic Efficacy And Higher Cognitive Function, Rhonda L. Mcfleder, Fernanda Mansur, Joel D. Richter

GSBS Student Publications

Translation of mRNAs in dendrites mediates synaptic plasticity, the probable cellular basis of learning and memory. Coordination of translational inhibitory and stimulatory mechanisms, as well as dendritic transport of mRNA, is necessary to ensure proper control of this local translation. Here, we find that the deadenylase CNOT7 dynamically regulates dendritic mRNA translation and transport, as well as synaptic plasticity and higher cognitive function. In cultured hippocampal neurons, synaptic stimulation induces a rapid decrease in CNOT7, which, in the short-term, results in poly(A) tail lengthening of target mRNAs. However, at later times following stimulation, decreased poly(A) and dendritic localization ...


The Circadian Clock Gene Bmal1 Coordinates Intestinal Regeneration, Kyle Stokes, Abrial Cooke, Hanna Chang, David R. Weaver, David T. Breault, Phillip Karpowicz 2017 University of Windsor

The Circadian Clock Gene Bmal1 Coordinates Intestinal Regeneration, Kyle Stokes, Abrial Cooke, Hanna Chang, David R. Weaver, David T. Breault, Phillip Karpowicz

Neurobiology Publications and Presentations

BACKGROUND and AIMS: The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied.

METHODS: We tested the timing of regeneration ...


Neuroanatomical Tracing Of The Gut -- Brain Axis, Ricardo P. Torres, Elizabeth A. Davis, Coltan G. Parker, Megan J. Dailey 2017 Waubosee Community College

Neuroanatomical Tracing Of The Gut -- Brain Axis, Ricardo P. Torres, Elizabeth A. Davis, Coltan G. Parker, Megan J. Dailey

Phenotypic Plasticity Research Experience for Community College Students

This poster summarizes a variety of methods to further characterize the gut-brain axis by tracing motor and sensory nerves between the gut and brain and identifying cell bodies in the sensory ganglia. Determines the meth method to trace the sensory and motor nerves was through fluorescence and the best method to identify sensory neuron cell bodies was the Nissi stain.


A Mathematical Model For Selective Differentiation Of Neural Progenitor Cells On Micropatterned Polymer Substrates, Cory L. Howk, Howard A. Levine, Michael W. Smiley, Surya K. Mallapragada, Marit Nilsen-Hamilton, Jisun Oh, Donald S. Sakaguchi 2017 University of Iowa

A Mathematical Model For Selective Differentiation Of Neural Progenitor Cells On Micropatterned Polymer Substrates, Cory L. Howk, Howard A. Levine, Michael W. Smiley, Surya K. Mallapragada, Marit Nilsen-Hamilton, Jisun Oh, Donald S. Sakaguchi

Surya K Mallapragada

The biological hypothesis that the astrocyte-secreted cytokine, interleukin-6 (IL6), stimulates differentiation of adult rat hippocampal progenitor cells (AHPCs) is considered from a mathematical perspective. The proposed mathematical model includes two different mechanisms for stimulation and is based on mass–action kinetics. Both biological mechanisms involve sequential binding, with one pathway solely utilizing surface receptors while the other pathway also involves soluble receptors. Choosing biologically-reasonable values for parameters, simulations of the mathematical model show good agreement with experimental results. A global sensitivity analysis is also conducted to determine both the most influential and non-influential parameters on cellular differentiation, providing additional insights ...


A Mathematical Model For Selective Differentiation Of Neural Progenitor Cells On Micropatterned Polymer Substrates, Cory L. Howk, Howard A. Levine, Michael W. Smiley, Surya K. Mallapragada, Marit Nilsen-Hamilton, Jisun Oh, Donald S. Sakaguchi 2017 University of Iowa

A Mathematical Model For Selective Differentiation Of Neural Progenitor Cells On Micropatterned Polymer Substrates, Cory L. Howk, Howard A. Levine, Michael W. Smiley, Surya K. Mallapragada, Marit Nilsen-Hamilton, Jisun Oh, Donald S. Sakaguchi

Marit Nilsen-Hamilton

The biological hypothesis that the astrocyte-secreted cytokine, interleukin-6 (IL6), stimulates differentiation of adult rat hippocampal progenitor cells (AHPCs) is considered from a mathematical perspective. The proposed mathematical model includes two different mechanisms for stimulation and is based on mass–action kinetics. Both biological mechanisms involve sequential binding, with one pathway solely utilizing surface receptors while the other pathway also involves soluble receptors. Choosing biologically-reasonable values for parameters, simulations of the mathematical model show good agreement with experimental results. A global sensitivity analysis is also conducted to determine both the most influential and non-influential parameters on cellular differentiation, providing additional insights ...


A C9orf72 Bac Mouse Model Recapitulates Key Epigenetic Perturbations Of Als/Ftd, Rustam Esanov, Gabriela Toro Cabrera, Nadja S. Andrade, Tania F. Gendron, Robert H. Brown Jr., Michael Benatar, Claes Wahlestedt, Christian Mueller, Zane Zeier 2017 University of Miami

A C9orf72 Bac Mouse Model Recapitulates Key Epigenetic Perturbations Of Als/Ftd, Rustam Esanov, Gabriela Toro Cabrera, Nadja S. Andrade, Tania F. Gendron, Robert H. Brown Jr., Michael Benatar, Claes Wahlestedt, Christian Mueller, Zane Zeier

Pediatric Publications and Presentations

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a fatal and progressive neurodegenerative disorder with identified genetic causes representing a significant minority of all cases. A GGGGCC hexanucleotide repeat expansion (HRE) mutation within the C9ORF72 gene has recently been identified as the most frequent known cause of ALS. The expansion leads to partial heterochromatinization of the locus, yet mutant RNAs and dipeptide repeat proteins (DPRs) are still produced in sufficient quantities to confer neurotoxicity. The levels of these toxic HRE products positively correlate with cellular toxicity and phenotypic severity across multiple disease models. Moreover, the degree of epigenetic repression inversely correlates with ...


Nonlinear Dynamics Of Pulsing Oscillators, Christopher B. Fritz 2017 Dickinson College

Nonlinear Dynamics Of Pulsing Oscillators, Christopher B. Fritz

Student Honors Theses By Year

Many oscillatory systems of great interest exhibit pulsing behavior. The analysis of such oscillators has historically utilized a constant-phase model such as the Kuramoto equation to describe their dynamics. These models accurately describe the behavior of pulsing oscillators on larger timescales, but to not explicitly capture the pulsing nature of the system being analyzed. Indeed, the Kuramoto model and its derivatives abstract the pulsing dynamics and instead use a constantly advancing phase, thereby blurring the specific dynamics in order to fit to an analytically tractable framework. In this thesis, a novel modification is presented by introducing a phase-dependence to the ...


Anti-Inflammatory Effect Of Secoisolariciresinol Diglucoside (Sdg) In Microglia, Kevin B. Seto, Kelly L. Jordan-Sciutto, Beth A. Winkelstein, Bekir Karabucak, Eric J. Granquist 2017 University of Pennsylvania

Anti-Inflammatory Effect Of Secoisolariciresinol Diglucoside (Sdg) In Microglia, Kevin B. Seto, Kelly L. Jordan-Sciutto, Beth A. Winkelstein, Bekir Karabucak, Eric J. Granquist

Dental Theses

Secoisolariciresinol diglucoside (SDG) is the main plant lignan in flaxseed and has been thoroughly researched in the past decades due to its unique health properties. SDG has been shown to have therapeutic benefits for an array of diseases including breast and prostate cancer, hyperlipidemia, atherosclerosis, hypertension, diabetes mellitus, and radiation pneumonopathy. With a number of studies recognizing the various health benefits of SDG, few have focused on its potential anti-inflammatory effect and, specifically, its interaction with the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Thus, the aim of this study is to elucidate the interaction between SDG and ...


Exploring The Role Of Dync1li1 In The Trafficking Of Glua2 Containing Ampa Receptors, Leah Esposito 2017 Carroll College, Helena, MT

Exploring The Role Of Dync1li1 In The Trafficking Of Glua2 Containing Ampa Receptors, Leah Esposito

Life & Environmental Sciences Undergraduate Theses

AMPA receptors are glutamate receptors that are found in the post-synaptic region of a neuron. They are one of the main receptors that are responsible for excitatory signaling in the central nervous system. The trafficking of these receptors is an area of knowledge that is not well developed, but is essential to a complete understanding of these receptor proteins. My research was focused on exploring the role that Dync1li1 has in the trafficking of GluA2-containing AMPARs. In order to investigate this role, the gene encoding Dync1li1 was amplified via PCR, cloned into a mammalian expression vector and transfected into HEK293 ...


Digital Commons powered by bepress