Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular and Cellular Neuroscience

Neuroglobin And Its Role In The Recovery Of Neuronal Cells In Hypoxic Conditions Using Hypoxia Inducible Factor– 1, Riya Shah Jan 2021

Neuroglobin And Its Role In The Recovery Of Neuronal Cells In Hypoxic Conditions Using Hypoxia Inducible Factor– 1, Riya Shah

Honors Undergraduate Theses

Stroke is the world's leading cause of adult disability, caused by lack of oxygen and nutrients to the brain due to a blood clot in a major artery. This leads to ischemic damage of neuronal cells that leads to paralysis, motor, and speech deficits. While most stroke therapies aim at removing or reducing the blood clots in the brain, few treatments target cell damage. Neuroglobin (NGB) is a protein in the brain that is able to aid in neuroprotection following oxidative stress. Hypoxia-Inducible Factor-1 (HIF-1) is a transcription factor that serves as a marker for cell recovery after hypoxia or …


Astrocytes Rescue Neuronal Health After Cisplatin Treatment Through Mitochondrial Transfer., Krystal English, Krystal English Aug 2020

Astrocytes Rescue Neuronal Health After Cisplatin Treatment Through Mitochondrial Transfer., Krystal English, Krystal English

Dissertations & Theses (Open Access)

Abstract

Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer.

Author: Krystal English

Advisory Professor: Dr. Cobi J. Heijnen, Ph.D.

Chemotherapy-induced cognitive impairments are associated with neuronal mitochondrial dysfunction. Cisplatin, a commonly used chemotherapeutic, induces neuronal mitochondrial dysfunction in vivo and in vitro. Astrocytes are key players in supporting neuronal development, synaptogenesis, axonal growth, metabolism and, potentially, mitochondrial health. We tested the hypothesis that astrocytes transfer healthy mitochondria to neurons after cisplatin treatment to restore neuronal health.

We used an in vitro system in which astrocytes with Mito-mCherry-labeled mitochondria were co-cultured with primary cortical neurons or neuronal stem …


Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi Jan 2019

Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi

Theses and Dissertations

The development of the nervous system is a multi-level, time-sensitive process that relies heavily on cell differentiation. However, the molecular mechanisms that control brain development remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained by this role were also present. Recently, a mutation in Spag17 has been associated with brain malformations and severe intellectual disability in humans. Therefore, we hypothesized that Spag17 plays a crucial role in …


Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak Jan 2019

Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak

Honors Undergraduate Theses

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an X-linked late-onset neurodegenerative disorder caused by a noncoding trinucleotide repeat expansion in the FMR1 gene. This gene produces fragile x mental retardation protein (FMRP), an RNA binding protein whose targets are involved in brain development and synaptic plasticity. One of the proposed mechanisms of FXTAS pathogenesis is an RNA gain-of-function in which the repeat expansion causes toxic mRNA that sequesters important proteins in the cell, interfering with their functions. Another suggested method of pathogenesis is through a mutant protein called FMRpolyG. This protein results from repeat-associated non-AUG (RAN) translation, in which the expanded …


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …


Cellular And Genetic Bases Of Cold Nociception And Nociceptive Sensitization In Drosophila Larvae, Heather N. Turner Dec 2016

Cellular And Genetic Bases Of Cold Nociception And Nociceptive Sensitization In Drosophila Larvae, Heather N. Turner

Dissertations & Theses (Open Access)

Organisms from flies to mammals utilize thermoreceptors to detect and respond to noxious thermal stimuli. Although much is understood about noxious heat avoidance, our understanding of the basic biology of noxious cold perception is gravely minimal. Numerous clinical conditions disrupt the sensory machinery, such as in patients suffering from tissue damage (from wound or sunburn), or injury to the peripheral nerves, as in patients with diabetes or undergoing chemotherapy. Our goal is to determine the genetic basis for noxious cold perception and injury-induced nociceptive sensitization using the genetically tractable Drosophila model. Using a novel "cold probe" tool and assay we …


The Effect Of Caffeine On Migraine Headaches, Deborah Shimshoni Jan 2016

The Effect Of Caffeine On Migraine Headaches, Deborah Shimshoni

Honors Undergraduate Theses

As the most widely consumed drug around the globe, there is a vast array of contradicting research available on caffeine. One of the most debated and researched topics on caffeine is its effect on the brain. Meanwhile, the data on the neurological condition of migraine has information scattered throughout countless research articles and experiments.

Although neither migraine or caffeine are completely understood by the medical world, this analysis attempts to give a more coherent understanding of the relationship between the two. This is done by first understanding the known and theorized mechanisms of caffeine as well as the pathologies of …


Rho Gtpases In Neuronal Apoptosis And Neurodegeneration, Trisha Stankiewicz Jan 2014

Rho Gtpases In Neuronal Apoptosis And Neurodegeneration, Trisha Stankiewicz

Electronic Theses and Dissertations

Several studies have identified Rho family GTPases (i.e. Rho, Rac, Cdc42) as mediators of diverse critical cellular processes, such as actin cytoskeleton remodeling, gene transcription, cell-cell adhesion, and cell cycle progression. However, more recent data highlight an essential role for Rho GTPases as regulators of neuronal morphology and neuronal survival. In particular, Rac GTPase generally induces neurite outgrowth and promotes neuronal survival while Rho GTPase typically provokes neurite retraction and induces neuronal apoptosis. However, the precise signaling pathways that regulate neuronal survival downstream of Rho GTPases and the potential involvement of dysregulated activity of Rho GTPases as a causative factor …


Mcp-1 And App Involvement Of Glial Differentiation And Migration Of Neuroprogenitor Cells, Emmanuel Vrotsos Jan 2009

Mcp-1 And App Involvement Of Glial Differentiation And Migration Of Neuroprogenitor Cells, Emmanuel Vrotsos

Electronic Theses and Dissertations

Neuroprogenitor cells are an important resource because of their potential to replace damaged cells in the brain caused by trauma and disease. It is of great importance to better understand which factors influence the differentiation and migration of these cells. Previously it has been reported that neuroprogenitor cells undergoing apoptotic stress have increased levels of Amyloid precursor protein (APP) and increased APP expression results in glial differentiation. APP activity was also shown to be required for staurosporine induced glial differentiation of neuroprogenitor cells. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that is expressed during inflammatory. The binding of MCP-1 to …