Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Virginia Commonwealth University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 32

Full-Text Articles in Molecular and Cellular Neuroscience

Utilizing Ai Integrated Neuroimaging Technology To Expand Upon Machine Learning In Positron Emission Tomography Technology With The Aim Of Detecting Amyloid Beta Biomarkers Early In The Onset Of Alzheimer's., Ethan S. Terman Jan 2024

Utilizing Ai Integrated Neuroimaging Technology To Expand Upon Machine Learning In Positron Emission Tomography Technology With The Aim Of Detecting Amyloid Beta Biomarkers Early In The Onset Of Alzheimer's., Ethan S. Terman

Undergraduate Research Posters

Early intervention in Alzheimer's is vital for treatment. The earlier a professional can detect symptoms and make a diagnosis the earlier a prognosis can be implemented. With the prevalence of data in our day-to-day world combined with Artificial intelligence (AI), utilizing both for machine learning can pave the way for more accurate and efficient detection of Alzheimer's and other neurodegenerative diseases. AI combined with Machine learning (ML) increases diagnostic efficiency and reduces human errors, making it a valuable resource for physicians and clinicians alike. With the increasing amount of data processing and image interpretation required, the ability to use AI …


Unraveling The Consequence Of Adult Onset Sulfatide Depletion: Its Implications In Myelin And Axonal Heath In The Context Of Neurodegenerative Disease, Elizabeth Dustin Jan 2023

Unraveling The Consequence Of Adult Onset Sulfatide Depletion: Its Implications In Myelin And Axonal Heath In The Context Of Neurodegenerative Disease, Elizabeth Dustin

Theses and Dissertations

Multiple Sclerosis is an immune mediated disease of the CNS. MS is diagnosed through detection of demyelinated regions. However, recent studies demonstrate that Normal Appearing White Matter (NAWM) contains substantial pathology. One such pathology observed in the NAWM is the reduction of sulfatide. The proper stoichiometry of lipids in myelin acts to maintain rapid conduction velocity, provide trophic support to the neuron, and protect the axon from degeneration. We previously characterized a mouse lacking sulfatide’s synthesizing enzyme, CST through constitutive gene disruption and demonstrate that sulfide is required for proper stability of the myelin sheath. However, since MS is typically …


Mechanistic Insight Into Traumatic Brain Injury Induced Neuronal Membrane Disruption: Cathepsin B Relocalization And A Neun Negative Cortical Neuron Subpopulation, Martina L. Hernandez Jan 2023

Mechanistic Insight Into Traumatic Brain Injury Induced Neuronal Membrane Disruption: Cathepsin B Relocalization And A Neun Negative Cortical Neuron Subpopulation, Martina L. Hernandez

Theses and Dissertations

Traumatic brain injury (TBI) is a mechanical insult to the head that leads to brain damage and, in turn, causes long-term sensory, motor, cognitive, and affective dysfunction. Diffuse pathologies seen following such injury are associated with these life-altering outcomes that impact the daily lives of TBI survivors. The diffuse pathology that this body of work focuses on is neuronal membrane disruption; it is characterized by increased permeability of the neuron’s plasma membrane. Moreover, our lab had previously found that membrane disruption is exacerbated with intracranial pressure (ICP) elevation. We set out to measure the duration of membrane disruption following injury …


Glyphosate And Dopaminergic Neurotoxicity: Herbicide Impacts On Parkinson's Disease Development, Lojy Hozyen Jan 2023

Glyphosate And Dopaminergic Neurotoxicity: Herbicide Impacts On Parkinson's Disease Development, Lojy Hozyen

Undergraduate Research Posters

Nearly one million individuals in the United States are living with Parkinson’s disease (PD). In the past two decades, the death rate from PD has risen by about 63 percent in the United States. Major findings have been made in the past five years about the potential impact of glyphosate (N-(phosphonomethyl) glycine) exposure on the onset of PD symptoms. The purpose of this meta-analysis is to provide a compiled update on the chemical and biological alterations that glyphosate imposes on the human brain. A meta-analysis was conducted to create a quantitative estimate of the connection between PD and glyphosate. Findings …


Estimating Glutamate Transporter Surface Density In Mouse Hippocampal Astrocytes, Anca R. Radulescu, Annalisa Scimemi May 2022

Estimating Glutamate Transporter Surface Density In Mouse Hippocampal Astrocytes, Anca R. Radulescu, Annalisa Scimemi

Biology and Medicine Through Mathematics Conference

No abstract provided.


Viral Injection Of Rna Polymerase Ii-Interacting Protein Rprd2 In The Nucleus Accumbens Induces Anxiety-Like Behavior In Mice, Hannah E. Woolard Jan 2022

Viral Injection Of Rna Polymerase Ii-Interacting Protein Rprd2 In The Nucleus Accumbens Induces Anxiety-Like Behavior In Mice, Hannah E. Woolard

Theses and Dissertations

Anxiety and its related disorders have become increasingly prevalent as more awareness and acceptance of mental illnesses have come to fruition, especially in the light of the ongoing COVID-19 pandemic. Anxiety can affect anyone regardless of their age, sex, or social status and is currently the most commonly diagnosed mental illness worldwide (Bandelow & Michaelis, 2015). While there are several effective treatments available, the underlying brain mechanisms that cause anxiety are still largely unknown and further research continues to piece together the complex pathophysiology behind this disease. The use of laboratory animal models, such as mice, to induce and observe …


Glucocorticoid Receptor Dysregulation Underlies 5-Ht2a Receptor-Dependent Synaptic And Behavioral Deficits In A Mouse Neurodevelopmental Disorder Model, Justin M. Saunders Jan 2021

Glucocorticoid Receptor Dysregulation Underlies 5-Ht2a Receptor-Dependent Synaptic And Behavioral Deficits In A Mouse Neurodevelopmental Disorder Model, Justin M. Saunders

Theses and Dissertations

Schizophrenia is a severe neuropsychiatric disorder that presents with diverse symptoms, some of which remain resistant to treatment. Increased risk of neurodevelopmental disorders such as schizophrenia has been observed following gestational infection in humans, leading to development of maternal immune activation (MIA) animal models. Increased density of the serotonin 5-HT2AR receptor (5-HT2AR), the primary target of hallucinogenic drugs and a key target of atypical antipsychotics, has been observed in postmortem antipsychotic-free prefrontal cortex samples from schizophrenia subjects, a change reflected in frontal cortex of adult MIA offspring. To model MIA, we administered 20 mg/kg i.p. of the viral mimetic poly-(I:C) …


Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen Jan 2021

Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen

Theses and Dissertations

Dopaminergic (DA) neurons in the ventral tegmental area (VTA) play a crucial role in reward and motivational behaviors, including the development of drug addictions. VTA DA neurons receive excitatory cholinergic inputs from the mesopontine tegmentum. Blockage of the M5 muscarinic receptor in DA neurons has been shown to attenuate drug-induced DA release and abuse-related behaviors, but the molecular mechanism is unknown. In this study, experiments were designed to identify the electrophysiological effects of muscarinic agonism in the modulation of action potential kinetics and firing patterns in VTA DA neurons of mice. Pharmacology of the muscarinic receptor-evoked current was also characterized. …


Interclass Gpcr Heteromerization Affects Localization And Trafficking, Rudy Toneatti Jan 2021

Interclass Gpcr Heteromerization Affects Localization And Trafficking, Rudy Toneatti

Theses and Dissertations

Class A serotonin (5-hydroxytryptamine) 2A (5-HT2AR) and class C metabotropic glutamate 2 receptors (mGluR2) are seven transmembrane receptors (7TMRs or G protein-coupled receptors – GPCRs) involved in multiple neuropsychiatric disorders including schizophrenia. Previous findings from our laboratory reported that 5-HT2AR and mGluR2 are dysregulated in the prefrontal cortex of patients suffering from this psychiatric condition, although 5-HT2AR’s expression was recovered in antipsychotic-medicated patients. Genome-wide association studies on schizophrenia reported that endosomal trafficking that regulates cell surface abundance of another 7TMR implicated in this disease (dopamine D2 receptor) can be altered. Ligand-activated receptors, including the …


Focal Augmentation Of Somatostatin Interneuron Function And Subsequent Circuit Effects In Developmentally Malformed, Epileptogenic Cortex, Nicole Ekanem Jan 2020

Focal Augmentation Of Somatostatin Interneuron Function And Subsequent Circuit Effects In Developmentally Malformed, Epileptogenic Cortex, Nicole Ekanem

Theses and Dissertations

Drug-resistant epilepsy (DRE) is a common clinical sequela of developmental cortical malformations such as polymicrogyria. Unfortunately, much remains unknown about the aberrant GABA-mediated circuit alterations that underlie DRE's onset and persistence in this context. To address this knowledge gap, we utilized the transcranial freeze lesion model in optogenetic mice lines (Somatostatin (SST)-Cre or Parvalbumin (PV)-Cre x floxed channelrhodopsin-2) to dissect features of the SST, PV, and pyramidal neuron microcircuit that are potentially associated with DRE. Investigations took place within developmental microgyria’s known pathological substrate, the adjoined and epileptogenic paramicrogyral region (PMR). As well, microcircuit relationships within the previously unexplored range …


Epigenetic Alterations At Synaptic Plasticity Genes In A Genetically Heterogeneous Rat Model Of Neuropsychiatric Disorders, Doan M. On Jan 2020

Epigenetic Alterations At Synaptic Plasticity Genes In A Genetically Heterogeneous Rat Model Of Neuropsychiatric Disorders, Doan M. On

Theses and Dissertations

Sensorimotor gating impairments are observed across a range of neuropsychiatric conditions. The prepulse inhibition of the acoustic startle response (PPI) is a validated measure of sensorimotor gating. Genetic and pharmacological manipulations in rodents have shown PPI is regulated by specific brain monoaminergic systems. Using genetically heterogeneous NIH-HS rats, we stratified individuals by %PPI. In low PPI animals, we observed elevated mRNA levels of certain neurotransmitter receptors, including metabotropic glutamate receptor Grm2, dopamine receptors Drd1 and Drd2, serotonin receptors Htr1a and Htr2a, and scaffolding protein Homer1, in the frontal cortex (FC) and striatum (STR). We found Drd2 …


Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies Jan 2019

Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies

Theses and Dissertations

Synthetic cathinones and related agents represent an international drug abuse problem, and at the same time an important class of clinically useful compounds. Structure-activity relationship studies are needed to elucidate molecular features underlying the pharmacology of these agents. Illicit methcathinone (i.e., MCAT), the prototype of the synthetic cathinone class, exists as a racemic mixture. Though the differences in potency and target selectivity between the positional and optical isomers of synthetic cathinones and related agents have been demonstrated to have important implications for abuse and therapeutic potential, the two MCAT isomers have never been directly compared at their molecular targets: the …


Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi Jan 2019

Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi

Theses and Dissertations

The development of the nervous system is a multi-level, time-sensitive process that relies heavily on cell differentiation. However, the molecular mechanisms that control brain development remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained by this role were also present. Recently, a mutation in Spag17 has been associated with brain malformations and severe intellectual disability in humans. Therefore, we hypothesized that Spag17 plays a crucial role in …


Glial Cell Mechanisms Regulate Alcohol Sedation In Drosophila Melanogaster, Kristen M. Lee Jan 2019

Glial Cell Mechanisms Regulate Alcohol Sedation In Drosophila Melanogaster, Kristen M. Lee

Theses and Dissertations

Approximately 16 million people in America are diagnosed with Alcohol Use Disorder (AUD) but no efficacious medical treatments exist. Alcohol-related behaviors can be studied in model organisms, and changes in these behaviors can be correlated with either (i) a risk for alcohol dependence or (ii) a symptom/feature of AUD itself. Although AUD is a disease of the central nervous system, a majority of research has focused on the neuronal underpinnings, leaving glial contributions largely undescribed. We used Drosophila melanogaster (fruit fly) to identify genes whose expression in glia regulates alcohol sedation. Mammals and Drosophila have conserved behavioral responses to alcohol …


Molecular Targets Of Psychedelics And Their Role In Behavioral Models Of Hallucinogenic Action, Hiba Z. Vohra Jan 2019

Molecular Targets Of Psychedelics And Their Role In Behavioral Models Of Hallucinogenic Action, Hiba Z. Vohra

Theses and Dissertations

Psychedelics are a subset of hallucinogenic drugs that exert their characteristic effects through agonist activity at the serotonin receptor 2A (5-HT2A). In this study, I aimed to characterize the modulatory role of the metabotropic glutamate subtype 2 receptor (mGluR2) in the 5-HT2A-specific rodent model of hallucinogenic action, head-twitch response (HTR). Secondly, I aimed to explore if 5-HT2A agonist-induced deficits in prepulse inhibition (PPI) of the startle response, an additional model of hallucinogenic action, could be produced in mice. Though 5-HT2A agonist-induced PPI deficits, which represent interruptions in normal sensorimotor gating, have been described in …


Chronic Clozapine Treatment Impairs Functional Activation Of Metabotropic Glutamate Receptor 2 Via An Hdac2-Depedent Mechanism, Travis M. Cuddy Jan 2018

Chronic Clozapine Treatment Impairs Functional Activation Of Metabotropic Glutamate Receptor 2 Via An Hdac2-Depedent Mechanism, Travis M. Cuddy

Theses and Dissertations

Schizophrenia is a chronic mental disorder affecting millions worldwide. It has no known cure. Current pharmaceutical treatments have shown efficacy in only one of the three symptom clusters of schizophrenia, providing little or no benefit in the other two. Furthermore, the current standard-of-care drugs, known as atypical antipsychotics, carry risks of severe side effects affecting multiple body systems. Most patients opt to discontinue drug therapy within two years of initiation due to lack of efficacy and/or preponderance of adverse effects. Previous findings have shown that chronic usage of atypical antipsychotics causes a 5-HT2A-dependent upregulation of histone deacetylase 2 …


Molecular Brain Adaptations To Ethanol: Role Of Glycogen Synthase Kinase-3 Beta In The Transition To Excessive Consumption, Andrew D. Van Der Vaart Jan 2018

Molecular Brain Adaptations To Ethanol: Role Of Glycogen Synthase Kinase-3 Beta In The Transition To Excessive Consumption, Andrew D. Van Der Vaart

Theses and Dissertations

Alcoholism is a complex neuropsychiatric disease that is characterized by compulsive alcohol use and intensifying cravings and withdrawals, often culminating in physiologic dependency. Fundamental alterations in brain chemistry underlie the transition from initial ethanol exposure to repetitive excessive use. Key mediators of this adaptation include changes in gene expression and signal transduction. Here we investigated gene expression pathways in prefrontal cortex and nucleus accumbens following acute or chronic ethanol treatment, to identify genes with potentially conserved involvement in the long-term response of the corticolimbic system to repeated ethanol exposure. We investigated Gsk3b, which encodes glycogen synthase kinase 3-beta, as a …


Role Of C121a In Mglur2 Homodimeric Expression And Function, Jong M. Shin Jan 2018

Role Of C121a In Mglur2 Homodimeric Expression And Function, Jong M. Shin

Theses and Dissertations

The group II metabotropic glutamate receptors are known for their involvement in various psychiatric disorders. The mGluR2 in particular is linked with etiology of schizophrenia especially in the context of crosstalk with 5-HT2A. Thus, the mGluR2 has attracted attentions for its potential therapeutic applications. Despite numerous physiological evidences on the actions of mGluR2, its mechanism is still unclear to this day. It is partially due to the lack of understanding in characteristics of mGluR2 homodimer which is its functionally active form. Therefore, the characterization of dimeric interaction serves as a foundation to advanced understanding of the role of mGluR2. On …


Mechanisms Regulating Axon Initial Segment Stability, Savannah D. Benusa Jan 2018

Mechanisms Regulating Axon Initial Segment Stability, Savannah D. Benusa

Theses and Dissertations

Axon initial segment (AIS) disruption has been described in a number of pathological environments where neuroinflammation is a contributing factor; however, whether this disruption is reversible in unknown. To address the principle of AIS structural recovery, we employed an acute neuroinflammatory model. Acute neuroinflammation induced disruption of AIS structural and functional domains and, importantly, upon resolution of neuroinflammatory conditions, was reversed.

Consistent with other studies, we observed a close interaction of microglia with AISs, and utilized this acute neuroinflammatory model to investigate the relationship between reactive microglia and AIS integrity. Gene expression analysis of microglial transcription profiles identified reactive oxygen …


Signaling Through Homomeric And Heteromeric Cannabinoid Cb1 Receptors, Guoqing Xiang Jan 2018

Signaling Through Homomeric And Heteromeric Cannabinoid Cb1 Receptors, Guoqing Xiang

Theses and Dissertations

Cannabis (Marijuana) has multiple effects on the human body, such as analgesia, euphoria and memory impairment. Delta-9 tetrahydrocannabinol (D9-THC), the active ingredient in cannabis, binds to cannabinoid receptors, seven-transmembrane G protein-coupled receptors (GPCRs) that mediate a variety of physiological functions. GPCRs were believed to function only in homomeric forms, however, recent findings show that different GPCRs can also form heteromeric complexes that may expand their signaling properties. In this study, we focused on Cannabinoid CB1 receptor (CB1R) heteromers with the mu-opioid receptor (MOR) and the Dopamine type 2 receptor (D2R), respectively. We utilized a variety of techniques, such as the …


Metabotropic Glutamate Receptor 2 Activation: Computational Predictions And Experimental Validation, Amr Ellaithy Jan 2018

Metabotropic Glutamate Receptor 2 Activation: Computational Predictions And Experimental Validation, Amr Ellaithy

Theses and Dissertations

G protein-coupled receptors (GPCRs) are the largest family of signaling proteins in animals and represent the largest family of druggable targets in the human genome. Therefore, it is of no surprise that the molecular mechanisms of GPCR activation and signal transduction have attracted close attention for the past few decades. Several stabilizing interactions within the GPCR transmembrane (TM) domain helices regulate receptor activation. An example is a salt bridge between 2 highly conserved amino acids at the bottom of TM3 and TM6 that has been characterized for a large number of GPCRs. Through structural modeling and molecular dynamics (MD) simulations, …


Characterizing The Role Of Key Planar Cell Polarity Pathway Components In Axon Guidance, Grayland W. Godfrey Ii Jan 2017

Characterizing The Role Of Key Planar Cell Polarity Pathway Components In Axon Guidance, Grayland W. Godfrey Ii

Theses and Dissertations

An essential process to the development of the neural network of the nervous system is axon guidance. The noncanonical Wnt/Planar Cell Polarity pathway has been identified as an integral component in controlling the projection of axons during axon guidance. Prickle, ROR1 and ROR2 are PCP related proteins that do not have clearly defined roles in the process. This study aims to use zebrafish CoPA neurons as a model to study the roles of Prickle, ROR1, and ROR2 in axon guidance. Using in situ hybridization, morpholino knockdown, and CRISPR/Cas9 loss of function experiments were able to identify ror1, ror2 and …


The Effects Of The Hiv-1 Tat Protein And Morphine On The Structure And Function Of The Hippocampal Ca1 Subfield, William D. Marks Jan 2017

The Effects Of The Hiv-1 Tat Protein And Morphine On The Structure And Function Of The Hippocampal Ca1 Subfield, William D. Marks

Theses and Dissertations

HIV is capable of causing a set of neurological diseases collectively termed the HIV Associated Neurocognitive Disorders (HAND). Worsening pathology is observed in HIV+ individuals who use opioid drugs. Memory problems are often observed in HAND, implicating HIV pathology in the hippocampus, and are also known to be exacerbated by morphine use. HIV-1 Tat was demonstrated to reduce spatial memory performance in multiple tasks, and individual subsets of CA1 interneurons were found to be selectively vulnerable to the effects of Tat, notably nNOS+/NPY- interneurons of the pyramidal layer and stratum radiatum, PV+ neurons of the pyramidal layer, and SST+ neurons …


Structural And Functional Alterations In Neocortical Circuits After Mild Traumatic Brain Injury, Michal Vascak Jan 2017

Structural And Functional Alterations In Neocortical Circuits After Mild Traumatic Brain Injury, Michal Vascak

Theses and Dissertations

National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons …


N-Alkyl 4-Methylamphetamine Enantiomers And The Implication For Potential Modulation Of Abuse Liability And Enhancement Of Psychoactive Drug Targeting., Ramsey Sitta Jan 2017

N-Alkyl 4-Methylamphetamine Enantiomers And The Implication For Potential Modulation Of Abuse Liability And Enhancement Of Psychoactive Drug Targeting., Ramsey Sitta

Theses and Dissertations

Drugs of abuse have a long history in humanity. Currently however, a subject of great interest is the phenylalkylamine family of drugs. Not only is the abuse liability of interest but also the potential therapeutic expansion of the capabilities of this family of drugs by utilizing the unique stereospecific effects of the newly discovered hybrid compounds. Based upon prior data of N-Alkyl 4-MA the enantiomers of N-Methyl, N-Ethyl, and N-Propyl were analyzed in hDAT, hNET, and hSERT. It was found that there was a negative correlation between chain length and potency and dopaminergic component. In agreement with the currently established …


Hydrogen Sulfide Regulation Of Kir Channels, Junghoon Ha Jan 2017

Hydrogen Sulfide Regulation Of Kir Channels, Junghoon Ha

Theses and Dissertations

Inwardly rectifying potassium (Kir) channels establish and regulate the resting membrane potential of excitable cells in the heart, brain and other peripheral tissues. Phosphatidylinositol- 4,5-bisphosphate (PIP2) is a key direct activator of ion channels, including Kir channels. Gasotransmitters, such as carbon monoxide (CO), have been reported to regulate the activity of Kir channels by altering channel-PIP2 interactions. We tested, in a model system, the effects and mechanism of action of another important gasotransmitter, hydrogen sulfide (H2S) thought to play a key role in cellular responses under ischemic conditions. Direct administration of sodium hydrogen sulfide (NaHS), as an exogenous H2S source, …


Role Of The Calcium Plateau In The Neuronal Injury And Behavioral Morbidities Following Organophosphate Intoxication, Laxmikant S. Deshpande, Robert E. Blair, Kristin F. Phillips, Robert J. Delorenzo Jan 2016

Role Of The Calcium Plateau In The Neuronal Injury And Behavioral Morbidities Following Organophosphate Intoxication, Laxmikant S. Deshpande, Robert E. Blair, Kristin F. Phillips, Robert J. Delorenzo

Neurology Publications

Organophosphate (OP) chemicals include nerve agents and pesticides, and there is a growing concern of OP based chemical attacks against civilians. Current antidotes are essential in limiting immediate mortality associated with OP exposure. However, further research is needed to identify molecular mechanisms underlying long-term neurological deficits following survival of OP toxicity in order to develop effective therapeutics. We have developed rat survival models of OP induced status epilepticus (SE) that mimic chronic mortality and morbidity following OP intoxication. We have observed significant elevations in hippocampal calcium levels after OP SE that persisted for weeks following initial survival. Drugs inhibiting intracellular …


Cannabinoid Receptor Interacting Protein Suppresses Agonist-Driven Cb1 Receptor Internalization And Regulates Receptor Replenishment In An Agonist-Biased Manner, Lawrence C. Blumes, Sandra Leone-Kabler, Deborah J. Luessen, Glenn S. Marrs, Erica Lyons, Caroline E. Bass, Rong Chen, Dana E. Selley, Allyn C. Howlett Jan 2016

Cannabinoid Receptor Interacting Protein Suppresses Agonist-Driven Cb1 Receptor Internalization And Regulates Receptor Replenishment In An Agonist-Biased Manner, Lawrence C. Blumes, Sandra Leone-Kabler, Deborah J. Luessen, Glenn S. Marrs, Erica Lyons, Caroline E. Bass, Rong Chen, Dana E. Selley, Allyn C. Howlett

Neurology Publications

Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1R) distal C-terminus-associated protein that modulates CB1R signaling via G proteins, and CB1R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB(1)Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown …


A Neural Circuit Of Appetite Control In C. Elegans, Kristen C. Davis Jan 2016

A Neural Circuit Of Appetite Control In C. Elegans, Kristen C. Davis

Theses and Dissertations

Feeding behavior and its associated neural circuitry is complex and intricate in mammalian systems, however, a simple model organism, such as C. elegans provides a more basic approach to understand factors and molecules involved. The fruit-dwelling nematode provides a unique set of resources; it only consists of 959 cells, 302 of which are neurons. In addition, each neuron’s connectivity and position within the worm is known and consistent between animals. Conservation of neurotransmitters and biochemical processes add to this impressive list. These resources provide an excellent background to address feeding behavior and the neural structures governing it.

Feeding behavior in …


High Affinity Block Of Icl,Swell By Thiol-Reactive Small Molecules, Sung H. Park Jan 2016

High Affinity Block Of Icl,Swell By Thiol-Reactive Small Molecules, Sung H. Park

Theses and Dissertations

Ebselen (Ebs) is considered as a glutathione peroxidase (GPx) mimetic and primarily thought to function by scavenging intracellular reactive oxygen species (ROS). Previous to our work, Deng et al. (2010a) demonstrated complete block of ICl,swell with 15 microM Ebs following endothelin-1 (ET-1) induced activation of the current in cardiomyocytes. This block was presumed to take effect mainly via the quenching of ROS. Nonetheless, our work with DI TNC1 astrocytes strongly emphasizes that Ebs might function by an alternative mechanism based on its kinetic profile in blocking ICl,swell. Our experiments showed that 45 nM Ebs can fully block …