Open Access. Powered by Scholars. Published by Universities.®

Developmental Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

Retina

Dissertations, Masters Theses, Capstones, and Culminating Projects

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Developmental Neuroscience

Modeling 3d Retinogenesis In Mouse Embryonic Stem Cells Following Crispr-Mediated Crx Knockdown, Pooja Prasad May 2017

Modeling 3d Retinogenesis In Mouse Embryonic Stem Cells Following Crispr-Mediated Crx Knockdown, Pooja Prasad

Dissertations, Masters Theses, Capstones, and Culminating Projects

An emerging technology known as three-dimensional (3D) tissue engineering has allowed scientists to mimic tissues found in vivo. Previous studies indicate that it is possible to differentiate dissociated mouse embryonic stem cells (mESCs) into 3D retinal tissues in vitro (Bertacchi, 2015; Eiraku, 2012). The newly differentiated retinal tissues are said to encompass all of the major components found in retinal tissues. The generation of in vitro 3D tissues holds great potential in terms of patient-specific disease modeling. Although various diseases have been well-studied in animal models, there are limitations with regards to patient-specificity. The generation of animal models to study …


Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds May 2015

Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds

Dissertations, Masters Theses, Capstones, and Culminating Projects

Degeneration of the rod and cone photoreceptors in the human retina is among the most common causes of blindness. Replacing these damaged photoreceptors may help to restore vision. Repairing the damaged retina relies on the insertion of new, healthy cells. Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are two possible sources of photoreceptors to restore vision. Previous data shows that human ES cells and iPS cells can be differentiated into photoreceptors and transplanted into the eye to restore some vision. However, this process is inefficient, and costly. Here, we show a new method for inducing photoreceptor production …