Open Access. Powered by Scholars. Published by Universities.®

Developmental Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Developmental Neuroscience

Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura Feb 2019

Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura

Dissertations, Theses, and Capstone Projects

There are two types of photosensitive cells of the retina that contribute to image formation: Cone photoreceptors that mediate color discrimination and rods that provide photosensitivity in low-light conditions. Given the importance of cones in high acuity and color vision, deficiencies in this cell type that result from ailments such as retinitis pigmentosa and macular degeneration can lead to a debilitating loss of vision. Currently, one of the most pressing goals in the field of retinal development is the elucidation of the gene regulatory networks (GRN) involved in inducing an undifferentiated cell into becoming a functional cone photoreceptor.

Recently, an …


Modeling 3d Retinogenesis In Mouse Embryonic Stem Cells Following Crispr-Mediated Crx Knockdown, Pooja Prasad May 2017

Modeling 3d Retinogenesis In Mouse Embryonic Stem Cells Following Crispr-Mediated Crx Knockdown, Pooja Prasad

Dissertations, Masters Theses, Capstones, and Culminating Projects

An emerging technology known as three-dimensional (3D) tissue engineering has allowed scientists to mimic tissues found in vivo. Previous studies indicate that it is possible to differentiate dissociated mouse embryonic stem cells (mESCs) into 3D retinal tissues in vitro (Bertacchi, 2015; Eiraku, 2012). The newly differentiated retinal tissues are said to encompass all of the major components found in retinal tissues. The generation of in vitro 3D tissues holds great potential in terms of patient-specific disease modeling. Although various diseases have been well-studied in animal models, there are limitations with regards to patient-specificity. The generation of animal models to study …


Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto Jan 2017

Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto

Biology Faculty Publications

The embryonic chick has long been a favorite model system for in vivo studies of vertebrate development. However, a major technical limitation of the chick embryo has been the lack of efficient loss-of-function approaches for analyses of gene functions. Here, we describe a methodology in which a transgene encoding artificial microRNA sequences is introduced into embryonic chick retinal cells by in ovo electroporation and integrated into the genome using the Tol2 transposon system. We show that this methodology can induce potent and stable suppression of gene expression. This technique therefore provides a rapid and robust loss-of-function approach for studies of …


Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds May 2015

Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds

Dissertations, Masters Theses, Capstones, and Culminating Projects

Degeneration of the rod and cone photoreceptors in the human retina is among the most common causes of blindness. Replacing these damaged photoreceptors may help to restore vision. Repairing the damaged retina relies on the insertion of new, healthy cells. Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are two possible sources of photoreceptors to restore vision. Previous data shows that human ES cells and iPS cells can be differentiated into photoreceptors and transplanted into the eye to restore some vision. However, this process is inefficient, and costly. Here, we show a new method for inducing photoreceptor production …


Dual Functions For Insulinoma-Associated 1 In Retinal Development, Marie A. Forbes-Osborne Jan 2015

Dual Functions For Insulinoma-Associated 1 In Retinal Development, Marie A. Forbes-Osborne

Theses and Dissertations--Biology

Proper visual system function requires tightly controlled proliferation of a pool of relatively homogeneous retinal progenitor cells, followed by the stepwise specification and differentiation of multiple distinct cell types. These retinal cells, both neuronal and glial, must be generated in the correct numbers, and the correct laminar location to permit the formation of synaptic connections between individual cell types. After synapses are made, constant signaling is required as part of normal retinal function, and to maintain cellular identity and connectivity. These processes rely on both extrinsic and intrinsic signaling, with regulation of gene expression by cascades of transcription factors having …


Loss-Of-Function Analysis Of Epha Receptors In Retinotectal Mapping, David Feldheim, Masaru Nakamoto, Miriam Osterfield, Nicholas Gale, Thomas Dechiara, Rajat Rohatgi, George Yancopoulos, John Flanagan Jan 2004

Loss-Of-Function Analysis Of Epha Receptors In Retinotectal Mapping, David Feldheim, Masaru Nakamoto, Miriam Osterfield, Nicholas Gale, Thomas Dechiara, Rajat Rohatgi, George Yancopoulos, John Flanagan

Biology Faculty Publications

EphA tyrosine kinases are thought to act as topographically specific receptors in the well-characterized projection map from the retina to the tectum. Here, we describe a loss-of-function analysis of EphA receptors in retinotectal mapping. Expressing patches of a cytoplasmically truncated EphA3 receptor in chick retina caused temporal axons to have reduced responsiveness to posterior tectal repellent activity in vitro and to shift more posteriorly within the map in vivo . A gene disruption of mouse EphA5, replacing the intracellular domain with beta-galactosidase, reduced in vitro responsiveness of temporal axons to posterior target membranes. It also caused map abnormalities in vivo …