Open Access. Powered by Scholars. Published by Universities.®

Organismal Biological Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organismal Biological Physiology

Characterization Of Phycoerythrin Physiology In Low-Light Adapted Prochlorococcus Ecotypes, Kathryn H. Roache-Johnson Aug 2013

Characterization Of Phycoerythrin Physiology In Low-Light Adapted Prochlorococcus Ecotypes, Kathryn H. Roache-Johnson

Electronic Theses and Dissertations

The marine cyanobacteria Prochlorococcus and Synechococcus are the most abundant phototrophs in the oceans. They cohabit the oligotrophic ocean and thus have coevolved together, yet they have distinctly different methods for harvesting light. Synechococcus, like other cyanobacteria, possess phycobilisomes with various combinations of phycobiliproteins to capture wavelengths of light not otherwise available to chlorophyll. Prochlorococcus lack phycobilisomes and use divinyl chlorophyll b (Chl b2) as their primary accessory pigment to divinyl chlorophyll a (Chl a2) to capture light energy. In addition to the divinyl chlorophylls, Prochlorococcus has genes associated with the phycobiliprotein phycoerythrin (PE), the role of which is still …


Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian Mar 2013

Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian

FIU Electronic Theses and Dissertations

In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion …