Open Access. Powered by Scholars. Published by Universities.®

Organismal Biological Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organismal Biological Physiology

Growth Of Diatom Fistulifera Alcalina In Bacterial Co-Culture And Comparative Mitogenomics Of Fistulifera Species, Erwin David Berthold Mar 2021

Growth Of Diatom Fistulifera Alcalina In Bacterial Co-Culture And Comparative Mitogenomics Of Fistulifera Species, Erwin David Berthold

FIU Electronic Theses and Dissertations

Diatoms are excellent biological models of growth and intracellular oil generation. The productivity and compounds of diatoms, especially oils, support aquatic food chains and human medical and industrial needs. The qualities that made diatoms prolific producers, specifically diatom physiological features such as growth rates with intracellular lipid storage in alkaline environments, are however poorly understood. Another physiological aspect that remains unexplored is the effects of bacteria on the growth and lipid production of alkaliphilic diatoms. More studies, especially co-cultures, are needed for advances in diatom biology and strain performance for the algal biotechnological field. Besides physiology, diatom genetics using next-generation …


Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian Mar 2013

Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian

FIU Electronic Theses and Dissertations

In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion …