Open Access. Powered by Scholars. Published by Universities.®

Organismal Biological Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organismal Biological Physiology

Growth Of Methanogens On Kaolinite, A Clay That Has Been Identified On Mars, Hailey Littrell May 2024

Growth Of Methanogens On Kaolinite, A Clay That Has Been Identified On Mars, Hailey Littrell

Biological Sciences Undergraduate Honors Theses

Methanogens have been studied as a model for life on Mars for 28 years now in the Kral lab. The discovery of methane in the Martian atmosphere by ground-based and orbital observations as well as Curiosity Rover (Formisano, V. et al., Krasnopolsky, V.A. et al., Mumma, M.J. et al.) has added relevance to these types of studies. Methanogens were chosen due to their ability to live in harsh environments, very similar to the Martian terrain. In addition to methane in the atmosphere, phyllosilicate clays have also been identified. One of those clays is kaolinite. Kaolinite has been found to not …


How Acetylation Regulates Metabolic Enzyme Function During Environmental Shifts, Jared Canonigo May 2021

How Acetylation Regulates Metabolic Enzyme Function During Environmental Shifts, Jared Canonigo

Biological Sciences Undergraduate Honors Theses

Organisms such as Saccharomyces cerevisiae can regulate the mechanisms of proteins through post-translational modification. These modifications play a vital role in functional proteomic activity because they can regulate protein activity, localization, and interaction with other cellular molecules. Such modifications include phosphorylation, methylation, and acetylation. The metabolic mechanisms of yeast became of keen interest to our lab because our lab noticed many stress defense proteins were being acetylated during stress heat shock. Notably, Adh1p and Adh2p showed both an increase and a decrease in acetylation at two lysine residues (K315 and K314) overtime during heat shock respectively, though the exact function …