Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 36

Full-Text Articles in Developmental Biology

Brown Anole (Anolis Sagrei) Hoxa5: Insights Into The Divergence Of Hoxa5 Gene Expression And Regulation Across Evolutionarily Divergent Gnathostome Vertebrates, Jennifer A. Lange, Amber L. Rittgers, Adam Davis Nov 2023

Brown Anole (Anolis Sagrei) Hoxa5: Insights Into The Divergence Of Hoxa5 Gene Expression And Regulation Across Evolutionarily Divergent Gnathostome Vertebrates, Jennifer A. Lange, Amber L. Rittgers, Adam Davis

Georgia Journal of Science

Hox genes are evolutionarily conserved developmental regulatory genes that function, in part, to pattern the anterior-posterior (AP) axis of organs and organ systems during animal embryonic development. Hoxa5, specifically, is shown to be expressed in the spinal cord, somites, or transient compartments giving rise to the vertebrae and ribs, developing gut, lungs, and limbs of the mouse (Mus musculus). The cis-regulatory elements (CREs), or short DNA sequences, that direct Hoxa5 expression in these embryonic domains have been mapped and functionally tested in the mouse as well. Similar Hoxa5 expression patterns have been observed in chicken ( …


Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing May 2023

Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing

Dissertations & Theses (Open Access)

Systemic sclerosis (SSc; scleroderma) is a chronic systemic autoimmune and connective tissue disorder characterized by vasculopathy, autoimmune phenomena, and widespread fibrosis. Skin thickening and tightening is the cardinal feature of SSc and is responsible, in part, for the considerable morbidity of this disease. There are currently no targeted treatments for skin manifestations in SSc, primarily due to our fragmented understanding of its pathophysiologic mechanisms. In PART I, we report a previously unappreciated link between aberrant expression of the developmental gene sine oculis homeobox homolog 1 (SIX1) in skin-associated adipocytes in SSc skin and the early loss of dermal white adipose …


Intellectual Disability Related To De Novo Germline Loss Of The Distal End Of The P-Arm Of Chromosome 17: A Case Report, Eden Pope, Matthew Huertas, Amar Paul, Braden Cunningham, Matthew Jennings, Ryan Perry, Stephanie Chavez, John A. Kriak, Kyle B. Bills, David W. Sant Feb 2023

Intellectual Disability Related To De Novo Germline Loss Of The Distal End Of The P-Arm Of Chromosome 17: A Case Report, Eden Pope, Matthew Huertas, Amar Paul, Braden Cunningham, Matthew Jennings, Ryan Perry, Stephanie Chavez, John A. Kriak, Kyle B. Bills, David W. Sant

Annual Research Symposium

Hypothesis/Purpose: In this report we present a case of a 20-year-old female with congenital intellectual disability, stunted growth, and hypothyroidism. Competitive genetic hybridization (CHG) revealed a loss of 17p13.3, and the deletion was not present in either parent. This deletion has not previously been characterized, but mutations on the p-arm of chromosome 17 are responsible for Miller-Dieker Syndrome and Isolated Lissencephaly Sequence, both of which share symptoms in common with the patient.

Methods: Peripheral mononuclear cells (PBMCs) were used for karyotyping and competitive genetic hybridization (CHG). Bioinformatic analysis was carried out using the Genome Data Viewer (ncbi.nlm.nih.gov/genome/gdv).

Results: Karyotype was …


Ngly1 Deficiency Affects Glycosaminoglycan Biosynthesis And Wnt Signaling Pathway In Mice, Amy Batten Oct 2022

Ngly1 Deficiency Affects Glycosaminoglycan Biosynthesis And Wnt Signaling Pathway In Mice, Amy Batten

PANDION: The Osprey Journal of Research and Ideas

Individuals affected by NGLY1 Deficiency cannot properly deglycosylate and recycle certain proteins. Even though less than 100 people worldwide have been diagnosed with this rare autosomal recessive condition, thousands are affected by similar glycosylation disorders. Common phenotypic manifestations of NGLY1 Deficiency include severe neural and intellectual delay, impaired muscle and liver function, and seizures that may become intractable. Very little is currently known about the various mechanisms through which NGLY1 deficiency affects the body and this has led to a lack of viable treatment options for those afflicted. This experiment uses a loss-of-function (LOF) mouse model of NGLY1 Deficiency homologous …


Translation Control Tunes Drosophila Oogenesis, Elliot T. Martin May 2022

Translation Control Tunes Drosophila Oogenesis, Elliot T. Martin

Legacy Theses & Dissertations (2009 - 2024)

The decision of a stem cell to either self-renew or differentiate is controlled by specific cellularpathways that can act at the level of transcription, translation, or post-translation. To study the regulation of these pathways in-vivo, I have used the female Drosophila germline as a model system. Each of the steps from germline stem cell (GSC) to egg require changes in cellular pathways. These changes can occur at the level of transcription, post-transciption, translation, or post-translation . Decades of research has elucidated many of the changes to gene that occur during oogenesis, however, many players in this process still remain mysterious. …


Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith Jan 2022

Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith

Graduate Theses, Dissertations, and Problem Reports

Plants are some of the most diverse organisms on earth, consisting of more than 350,000 different species. To understand the underlying processes that contributed to plant diversification, it is fundamental to identify the genetic and genomic components that facilitated various adaptations over evolutionary history. Most studies to date have focused on the underlying controls of above-ground traits such as grain and vegetation; however, little is known about the “hidden half” of plants. Root systems comprise half of the total plant structure and provide vital functions such as anchorage, resource acquisition, and storage of energy reserves. The execution of these key …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

University Scholar Projects

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Differentiating Human Embryonic Stem Cells In Micropatterns To Study Cell Fate Specification And Morphogenetic Events During Gastrulation, Kyaw Thu Minn Jan 2021

Differentiating Human Embryonic Stem Cells In Micropatterns To Study Cell Fate Specification And Morphogenetic Events During Gastrulation, Kyaw Thu Minn

McKelvey School of Engineering Theses & Dissertations

During mammalian embryogenesis, the first major lineage segregation occurs when embryonic epiblast, and extraembryonic trophectoderm and hypoblast arise in the blastocyst. In the next fundamental and conserved phase of animal embryogenesis known as gastrulation, extraembryonic cells provide signals to epiblast to instruct embryonic patterning, and epiblast gives rise to germ layers ectoderm, mesoderm, and endoderm, that will establish all embryonic tissues. Proper specification and morphogenesis of germ layers during gastrulation is vital for correct embryonic development. Due to ethical and legal restrictions limiting human embryo studies, human gastrulation is poorly understood. Our knowledge of human gastrulation has largely been derived …


Leveraging Transcriptomic Approaches To Identify Differences In Genetic Programming Driving Two Distinct Wound Healing Mechanisms, Regeneration And Fibrosis, In Acomys And Mus, Shishir K. Biswas Jan 2021

Leveraging Transcriptomic Approaches To Identify Differences In Genetic Programming Driving Two Distinct Wound Healing Mechanisms, Regeneration And Fibrosis, In Acomys And Mus, Shishir K. Biswas

Theses and Dissertations--Biology

Why can some animals and others cannot? This fundamental question has fueled scientists studying regeneration for hundreds of years since early observations in crayfish, salamanders and many other organisms. While most contemporary work in regeneration is done in a handful of species including salamanders, zebrafish and flatforms, these organisms lack a closely-related, non-regenerating sister species from which unique genetic differences can be identified. Additionally, while much has been learned from these organisms, they do not share fundamental biological traits with mammals (endothermy, metabolism and immune system) which limits the ability to translate this research for clinical medicine. To this end, …


Transgenerational Plasticity Causes Differences In Uv-Tolerance Of Intertidal And Subtidal Populations Of The Purple Sea Urchin, Strongylocentrotus Purpuratus, Yareli Alvarez, Nikki L. Adams Sep 2020

Transgenerational Plasticity Causes Differences In Uv-Tolerance Of Intertidal And Subtidal Populations Of The Purple Sea Urchin, Strongylocentrotus Purpuratus, Yareli Alvarez, Nikki L. Adams

Master's Theses

Planktonic larvae of marine organisms are increasingly being exposed and required to respond to a changing physical environment. Adult sea urchins occupy both intertidal and subtidal waters and broadcast spawn gametes into the water column to contend with variable physical conditions. To answer how populations of invertebrates residing at different depths adequately prepare their offspring to cope with different levels of ultraviolet radiation (UVR), we collected adult purple sea urchins, Strongylocentrotus purpuratus, from four sites (two intertidal and two subtidal (~15 m deep)) on the central coast of CA to compare UV tolerance in offspring. Our measurements of UVA …


Modeling Hybrid Novel Traits: A Case Study In Complex Petal Pigment Patterning In Hybrid Mimulus, Xingyu Zheng May 2020

Modeling Hybrid Novel Traits: A Case Study In Complex Petal Pigment Patterning In Hybrid Mimulus, Xingyu Zheng

Undergraduate Honors Theses

Hybridization between species, by introducing dramatic trait variation into the population and creating viable, transgressive offsprings with novel phenotypes, can have huge evolutionary implications. Some hybrid traits have been studied in the classical genetics or population genetics context, but most complex traits are determined by multiple causes, e.g. the number of loci involved, the rewiring of the genetic circuitries, and the changes in gene expression pattern. Using the hybrid monkeyflower petal pigment patterning as an example, we present a case study to investigate complex hybrid traits in a systematic manner that includes empirical data analysis and quantitative mathematical modeling of …


Tpr-Containing Proteins Control Protein Organization And Homeostasis For The Endoplasmic Reticulum, Jill Bradley-Graham Mar 2020

Tpr-Containing Proteins Control Protein Organization And Homeostasis For The Endoplasmic Reticulum, Jill Bradley-Graham

Doctoral Dissertations

The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into several functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Nine TPR-containing proteins have been shown to localize to the ER and control protein organization and …


Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon Feb 2020

Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon

Electronic Thesis and Dissertation Repository

Over the lifetime of an organism, neurons must establish, remodel, and maintain precise connections in order to form neural circuits that are required for proper nervous system functioning. Disruptions in these processes can lead to neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder. Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex have been implicated in ID, yet the role of this complex in neurons is poorly understood. In this project, I established cell-type specific methods to examine the effect of SWI/SNF subunit knockdowns on gene transcription and chromatin structure in the memory-forming neurons of …


A Transcriptomic Exploration Of Hawaiian Drosophilid Development And Evolution, Madeline M. Chenevert Dec 2019

A Transcriptomic Exploration Of Hawaiian Drosophilid Development And Evolution, Madeline M. Chenevert

University of New Orleans Theses and Dissertations

One in four known species of fruit flies inhabit the Hawaiian Islands. From a small number of colonizing flies, a wide range of species evolved, some of which managed to reverse-colonize other continental environments. In order to explore the developmental pathways, which separate the Hawaiian Drosophila proper and the Scaptomyza group that contains reverse-colonized species, the transcriptomes of two better-known species in each group, Scaptomyza anomala and Drosophila grimshawi, were analyzed to find changes in gene expression between the two groups. This study describes a novel transcriptome for S. anomala studies as well as unusual changes in gene expression …


From Single Cells To Human Disease: High-Resolution Phenotyping Of Male Infertility Models Using Single-Cell Rna Sequencing, Min Jung Aug 2019

From Single Cells To Human Disease: High-Resolution Phenotyping Of Male Infertility Models Using Single-Cell Rna Sequencing, Min Jung

Arts & Sciences Electronic Theses and Dissertations

Male infertility is a complex disease that can result in significant emotional distress and treatment costs. Globally, male infertility affects 7% of males, and while its incidence is rising, its etiology remains elusive. In order to improve patient care, it is critical to identify the nature of spermatogenic failure in as many men as possible. The extensive cellular heterogeneity of testis has limited the application of bulk expression measurements to capture crucial information to dissect molecular mechanisms of defects in the infertile patients. Thus, the application of single-cell RNA-sequencing on male germ cells provides an amazing new set of scientific …


Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang Aug 2019

Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang

Theses and Dissertations

The cardiac outflow tract (OFT) is a transient conduit that connects the embryonic heart chambers to the vascular network. Transcription factor Osr1 promotes the proliferation and cell cycle progression of second heart field (SHF), an essential cell population that contribute to the developing OFT. In this study, we investigated the role of Osr1 in OFT development on cellular and molecular levels using a systems biology approach. We observed OFT rotation and elongation defects, as well as double-outlet right ventricle and overriding aorta as a result of SHF-specific deletion of Osr1. Using genetic inducible fate mapping, we showed that Osr1-expressing SHF …


Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura Feb 2019

Molecular Analysis Of Cone Photoreceptor Genesis From A Specific Retinal Progenitor Population, Diego F. Buenaventura

Dissertations, Theses, and Capstone Projects

There are two types of photosensitive cells of the retina that contribute to image formation: Cone photoreceptors that mediate color discrimination and rods that provide photosensitivity in low-light conditions. Given the importance of cones in high acuity and color vision, deficiencies in this cell type that result from ailments such as retinitis pigmentosa and macular degeneration can lead to a debilitating loss of vision. Currently, one of the most pressing goals in the field of retinal development is the elucidation of the gene regulatory networks (GRN) involved in inducing an undifferentiated cell into becoming a functional cone photoreceptor.

Recently, an …


Genetic Basis Of Thermal Divergence In Saccharomyces Species, Xueying C. Li Dec 2018

Genetic Basis Of Thermal Divergence In Saccharomyces Species, Xueying C. Li

Arts & Sciences Electronic Theses and Dissertations

The genetic architecture of phenotypic divergence is a central question in evolutionary biology. Genetic architecture is impacted by whether evolution occurs through accumulation of many small-effect or a few large-effect changes, the relative contribution of coding and cis-regulatory changes, and the prevalence of epistatic effects. Our empirical understanding of the genetic basis of evolutionary change remains incomplete, largely because reproductive barriers limit genetic analysis to those phenotypes that distinguish closely related species. In this dissertation, I use hybrid genetic analysis to examine the basis of thermal divergence between two post-zygotically isolated species, Saccharomyces cerevisiae and S. uvarum. S. cerevisiae is …


Extrinsic And Intrinsic Factors In Liver Development, Amrita Palaria Jul 2018

Extrinsic And Intrinsic Factors In Liver Development, Amrita Palaria

Doctoral Dissertations

Liver is the largest internal organ of the human body. It performs a multitude of functions. Therefore, it is provided with a huge regenerative capacity however, because of the same reason it is also prone to various diseases. Hence, it is essential to understand liver development in order to understand liver regeneration and liver diseases to provide better therapeutic targets and solutions. Liver development is orchestrated by a variety of intrinsic and extrinsic factors. The major focus of this dissertation thesis is to elucidate the role of BMP signals and YY1/VEGFA regulated signals in liver development. Liver organogenesis initiates with …


Transcriptome Profiling Of Cleft Palate Intgf-Beta3 Knockout Mice Alleles: Rna-Seq Analysis Of Tgf-Beta3 Mice, Kelsey White Dec 2017

Transcriptome Profiling Of Cleft Palate Intgf-Beta3 Knockout Mice Alleles: Rna-Seq Analysis Of Tgf-Beta3 Mice, Kelsey White

Theses & Dissertations

Background: Orofacial clefts are the most common craniofacial birth defect with a complex, combinatorial etiology. Tgf-b3 regulates palatal fusion in mice; Tgf-b3 knockout mice have cleft palate (CP) lacking other major deformities. The genes downstream of Tgf-b3 during palatogenesis remain largely unexplored. Our objective was to analyze the global transcriptome changes and their contribution to CP and identify novel Tgf-b3 associated genes involved in formation of CP. We used RNA-sequencing to analyze and compare the whole transcriptome of Tgf-b3 alleles during palatal growth and fusion in mice.

Results: …


Rna Sequencing Analysis Of The Developing Chicken Retina, Christophe Langouet-Astrie*, Annamarie Meinsen*, Emily R. Grunwald*, Stephen Turner, Raymond A. Enke Nov 2016

Rna Sequencing Analysis Of The Developing Chicken Retina, Christophe Langouet-Astrie*, Annamarie Meinsen*, Emily R. Grunwald*, Stephen Turner, Raymond A. Enke

Ray Enke Ph.D.

RNA sequencing transcriptome analysis using massively parallel next generation sequencing technology provides the capability to understand global changes in gene expression throughout a range of tissue samples. Development of the vertebrate retina requires complex temporal orchestration of transcriptional activation and repression. The chicken embryo (Gallus gallus) is a classic model system for studying developmental biology and retinogenesis. Existing retinal transcriptome projects have been critical to the vision research community for studying aspects of murine and human retinogenesis, however, there are currently no publicly available data sets describing the developing chicken retinal transcriptome. Here we used Illumina RNA sequencing …


Modeling And Analysis Of Germ Layer Formations Using Finite Dynamical Systems, Alexander Garza, Megan Eberle, Eric A. Eager Aug 2016

Modeling And Analysis Of Germ Layer Formations Using Finite Dynamical Systems, Alexander Garza, Megan Eberle, Eric A. Eager

Spora: A Journal of Biomathematics

The development of an embryo from a fertilised egg to a multicellular organism proceeds through numerous steps, with the formation of the three germ layers (endoderm, mesoderm, ectoderm) being one of the first. In this paper we study the mesendoderm (the tissue that collectively gives rise to both mesoderm and endoderm) gene regulatory network for two species, \textit{Xenopus laevis} and the axolotl (\textit{Ambystoma mexicanum}) using Boolean networks. We find that previously-established bistability found in these networks can be reproduced using this Boolean framework, provided that some assumptions used in previously-published differential equations models are relaxed. We conclude by discussing our …


Investigation Into The Function Of Endothelial Cells And Their Signaling In Early Salivary Gland Development, Hae Ryong Kwon Jan 2016

Investigation Into The Function Of Endothelial Cells And Their Signaling In Early Salivary Gland Development, Hae Ryong Kwon

Legacy Theses & Dissertations (2009 - 2024)

Functional vasculature regulates organ formation and regeneration. Perfusion-independent and nutrition-independent endothelial regulation of epithelial patterning is of considerable interest for application in restoring parenchymal function. During murine submandibular salivary gland development, the vasculature co-develops with the epithelium; however, it is still unknown if the vasculature has instructive effects on the epithelium. A systems biological study revealed that endothelial genes are enriched in epithelial clefts, suggesting a potential involvement of endothelial cells in early morphogenesis. Using immunodepletion of the endothelial cells from the mesenchyme of reconstituted glands, a requirement for endothelial cells in epithelial patterning was demonstrated. Specifically, lobule formation was …


Functional Characterization Of The Roles Of Endocytic Recycling Regulator Ehd1 Using In Vivo And In Vitro Analyses, Priyanka Arya Aug 2015

Functional Characterization Of The Roles Of Endocytic Recycling Regulator Ehd1 Using In Vivo And In Vitro Analyses, Priyanka Arya

Theses & Dissertations

Endocytic recycling is a fundamental cellular process that allows the precise regulation of the membrane components and receptors at the cell surface. Recent studies have established that the C-terminal Eps15 homology domain-containing (EHD) proteins function as key regulators of this process. Four highly-conserved members of the EHD protein family in mammals, EHD1-EHD4, play shared as well as unique roles in endocytic trafficking. Studies presented here demonstrate a critical role of EHD1 in the normal ocular development in mice. Ehd1 knockout mice generated in our laboratory displayed gross ocular phenotypes including the anophthalmia, microphthalmia, and congenital cataracts. Hematoxylin and eosin (H&E) …


Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi Aug 2015

Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi

Doctoral Dissertations

Waterlogging stress leads to a crisis in energy metabolism and the accumulation of toxic metabolites due to the hypoxic and/or anoxic environment associated with this condition. To respond and adapt to this situation, higher plants employ an integrated genetic program that leads to the induction of anaerobic response polypeptide genes that encode metabolic and signaling proteins involved in altering metabolic flow and other adaptive responses. The study presented here shows that the Arabidopsis thaliana calmodulin-like protein CML38 is calcium sensor protein that serves as a member of the core anaerobic response gene family and is involved in modulating the survival …


Profiling Gene Expression During Early Gametophyte Development And Sex Determination In Ceratopteris Richardii, Nadia Atallah Apr 2015

Profiling Gene Expression During Early Gametophyte Development And Sex Determination In Ceratopteris Richardii, Nadia Atallah

Open Access Dissertations

In the fern Ceratopteris richardii, every spore has the potential to develop as either a male or hermaphroditic gametophyte. Gametophyte sex is determined by a GA-like pheromone (ACE) that is secreted by hermaphrodites approximately 6 days after spore inoculation and induces male development in other juvenile gametophytes. Our goal is to better understand the genetic and molecular mechanisms involved in sex determination and to identify sex determination genes in Ceratopteris. RNA-Seq was used to create de novotranscriptome assemblies from gametophytes grown, with or without ACE, during the time that their sex is determined, and from male gametophytes in early …


Transcriptome Analysis Of Sea Lamprey Embryogenesis, Zakary Ilya Yermolenko May 2014

Transcriptome Analysis Of Sea Lamprey Embryogenesis, Zakary Ilya Yermolenko

Seton Hall University Dissertations and Theses (ETDs)

The sea lamprey (Petromyzon marinus) has survived throughout evolution for hundreds of millions of years. It is considered an invasive species to the Great Lakes that has caused dramatic changes in the ecosystem for fish communities resulting in the collapse of a fishing industry that was previously valued at billions of dollars. Successful management of the sea lamprey is essential to a sustainable fishing industry and biodiversity. Therefore sea lamprey embryos were studied at various stages of development by growing them in a simulated habitat. RNAs from adult female ovaries and embryos at different time points during embryogenesis …


P53 Maintains Hepatic Cell Identity During Liver Regeneration, Zeynep Hande Coban Akdemir May 2014

P53 Maintains Hepatic Cell Identity During Liver Regeneration, Zeynep Hande Coban Akdemir

Dissertations & Theses (Open Access)

p53 MAINTAINS HEPATIC CELL IDENTITY DURING LIVER REGENERATION

Zeynep Hande Coban Akdemir, B.S.,M.A.

Advisory Professor: Michelle Craig Barton, Ph.D.

p53 is a tumor suppressor that has been well studied in tumor-derived, cultured cells. However, its functions in normal proliferating cells and tissues are generally overlooked. We propose that p53 functions during the G1-S transition can be studied in normal, differentiated cells during surgery-induced liver regeneration. Two-thirds partial hepatectomy (PH) of mouse liver offers a unique model to compare p53 functions in regenerating versus sham (control) cells. My hypothesis is that intersection of global expression analyses (microarray and RNA sequencing) and …


The Atp2c2 Gene As Transcribed From A Novel Transcriptional Start Site In Pancreatic Acinar Cells, Caitlin M. Sullivan Jan 2014

The Atp2c2 Gene As Transcribed From A Novel Transcriptional Start Site In Pancreatic Acinar Cells, Caitlin M. Sullivan

Electronic Thesis and Dissertation Repository

Strict regulation of cytosolic Ca2+ is essential to regulated exocytosis and proper pancreatic acinar cell function, controlled in part by pumps that shuttle Ca2+ out of the cytosol. Our laboratory identified a novel isoform of Secretory Ca2+ ATPase 2 (SPCA2) containing only the carboxy terminus. Pancreatic SPCA2, is an approximately 17-20 kDa, protein encoded by the Atp2c2 gene and is completely absent in Mist1-/- acini.. The focus of this thesis was to understand transcriptional regulation of Atp2c2 in the pancreas. Pancreatic Atp2c2 appears to be transcribed from an alternative transcriptional start site (TSS) and is regulated …