Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

1,157 Full-Text Articles 2,604 Authors 119,135 Downloads 115 Institutions

All Articles in Developmental Biology

Faceted Search

1,157 full-text articles. Page 1 of 44.

Network Analyses Of Glomerular Capillaries, Jason Cory Brunson, Justin Sardi, Mark Terasaki 2019 UConn Health

Network Analyses Of Glomerular Capillaries, Jason Cory Brunson, Justin Sardi, Mark Terasaki

Biology and Medicine Through Mathematics Conference

No abstract provided.


The Function Of Ecdysone And Inhibiting Programmed Cell Death In Death Class Iii Neurons Of Drosophila Melanogaster, Nikolas Richard Likourentzos 2019 University of Tennessee, Knoxville

The Function Of Ecdysone And Inhibiting Programmed Cell Death In Death Class Iii Neurons Of Drosophila Melanogaster, Nikolas Richard Likourentzos

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

The inhibition of programmed cell death is a factor believed to be responsible for the survival of cancer cells. Using Drosophila as models, factors contributing to the process of programmed cell death can be studied. Neurons die throughout Drosophila melanogaster development to allow the addition of new neurons. The groups of neurons programmed to die are Death Class I neurons, Death Class II neurons, and Death Class III neurons. Ecdysone is a hormone responsible for the timing of programmed cell death (PCD) in the Death Class neurons. Elevated levels of ecdysone are associated with the initiation of PCD of Death ...


A Screen For Genetic Modifiers Of Protein Phosphatase 1 Function In Drosophila Collective Cell Cohesion And Migration, Carmen F. Del Real, Yujun Chen, Marissa Komp, Jocelyn A. McDonald 2019 Kansas State University

A Screen For Genetic Modifiers Of Protein Phosphatase 1 Function In Drosophila Collective Cell Cohesion And Migration, Carmen F. Del Real, Yujun Chen, Marissa Komp, Jocelyn A. Mcdonald

Kansas State University Undergraduate Research Conference

Cells can migrate collectively in tightly or loosely-associated groups during tissue and organ formation, during embryonic development, in tumor metastases, and in wound healing. Drosophilaborder cellsserve as an excellent genetic model of collective cell migration inside a developing tissue. During ovarian development, 6-8 cells form the border cell cluster and migrate together as a cohesive group to reach the large oocyte. Previous experiments have shown that Nuclear inhibitor of Protein Serine Threonine Phosphatase 1 (NiPP1) causes border cells to separate into single cells, rather than stay in a group, and limits their ability to migrate. NiPP1 inhibits the ...


Using Arabidopsis Mesophyll Protoplasts To Study Unfolded Protein Response Signaling, Yan Bao, Diane C. Bassham 2019 Iowa State University

Using Arabidopsis Mesophyll Protoplasts To Study Unfolded Protein Response Signaling, Yan Bao, Diane C. Bassham

Diane Bassham

Various environmental stresses or artificial reagents can trigger unfolded protein accumulation in the endoplasmic reticulum (ER) due to the folding capacity of the ER being exceeded. This is termed ER stress, and triggers the unfolded protein response (UPR). Assays for activation of the UPR in plants include Tunicamycin (Tm)- or dithiothreitol (DTT)-mediated root growth inhibition, analysis of splicing of the UPR-responsive transcription factor bZIP60 (basic Leucine Zipper Domain 60), and upregulation of relevant UPR genes. We provide here a quick and robust method to detect UPR signaling in Arabidopsis thaliana protoplasts. This assay can also be applied to other ...


Snrk1 Activates Autophagy Via The Tor Signaling Pathway In Arabidopsis Thaliana, Junmarie Soto-Burgos, Diane C. Bassham 2019 Iowa State University

Snrk1 Activates Autophagy Via The Tor Signaling Pathway In Arabidopsis Thaliana, Junmarie Soto-Burgos, Diane C. Bassham

Diane Bassham

Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 ...


Tor-Dependent And -Independent Pathways Regulate Autophagy In Arabidopsis Thaliana, Yunting Pu, Xinjuan Luo, Diane C. Bassham 2019 Iowa State University

Tor-Dependent And -Independent Pathways Regulate Autophagy In Arabidopsis Thaliana, Yunting Pu, Xinjuan Luo, Diane C. Bassham

Diane Bassham

Autophagy is a critical process for recycling of cytoplasmic materials during environmental stress, senescence and cellular remodeling. It is upregulated under a wide range of abiotic stress conditions and is important for stress tolerance. Autophagy is repressed by the protein kinase target of rapamycin (TOR), which is activated in response to nutrients and in turn upregulates cell growth and translation and inhibits autophagy. Down-regulation of TOR in Arabidopsis thaliana leads to constitutive autophagy and to decreased growth, but the relationship to stress conditions is unclear. Here, we assess the extent to which TOR controls autophagy activation by abiotic stress. Overexpression ...


Tno1, A Tgn-Localized Snare-Interacting Protein, Modulates Root Skewing In Arabidopsis Thaliana, Rahul Roy, Diane C. Bassham 2019 Iowa State University

Tno1, A Tgn-Localized Snare-Interacting Protein, Modulates Root Skewing In Arabidopsis Thaliana, Rahul Roy, Diane C. Bassham

Diane Bassham

Background: The movement of plant roots within the soil is key to their ability to interact with the environment and maximize anchorage and nutrient acquisition. Directional growth of roots occurs by a combination of sensing external cues, hormonal signaling and cytoskeletal changes in the root cells. Roots growing on slanted, impenetrable growth medium display a characteristic waving and skewing, and mutants with deviations in these phenotypes assist in identifying genes required for root movement. Our study identifies a role for a trans-Golgi network-localized protein in root skewing.

Results: We found that Arabidopsis thaliana TNO1 (TGN-localized SYP41-interacting protein), a putative tethering ...


Cellular Dynamics: Cellular Systems In The Time Domain, Dan Szymanski, Diane Bassham, Teun Munnik, Wataru Sakamoto 2019 Iowa State University

Cellular Dynamics: Cellular Systems In The Time Domain, Dan Szymanski, Diane Bassham, Teun Munnik, Wataru Sakamoto

Diane Bassham

Plant cells are the fundamental building blocks of growth and development. For each cell type, the size, shape, and mechanical properties of the cell wall are customized for particular physiological functions (Szymanski and Cosgrove, 2009; Winship et al., 2011). The morphogenesis of highly polarized cell types such as trichoblasts and pollen tubes is internally programmed and occurs largely in the absence of a neighbor. Most cell types differentiate in the context of a tissue. Therefore, their growth and shape change can operate at larger spatial scales to influence tissue- and organ-level processes. Because plant cells grow symplastically and are mechanically ...


A Functional Unfolded Protein Response Is Required For Normal Vegetative Development, Yan Bao, Diane C. Bassham, Stephen H. Howell 2019 Iowa State University

A Functional Unfolded Protein Response Is Required For Normal Vegetative Development, Yan Bao, Diane C. Bassham, Stephen H. Howell

Diane Bassham

The unfolded protein response (UPR) is activated in plants in response to endoplasmic reticulum stress and plays an important role in mitigating stress damage. Multiple factors act in the UPR, including the membrane-associated transcription factor, BASIC LEUCINE ZIPPER 17 (bZIP17), and the membrane-associated RNA splicing factor, INOSITOL REQUIRING ENZYME1 (IRE1). We have analyzed an Arabidopsis (Arabidopsis thaliana) ire1a ire1b bzip17 triple mutant, with defects in stress signaling, and found that the mutant is also impaired in vegetative plant growth under conditions without externally applied stress. This raised the possibility that the UPR functions in plant development in the same manner ...


Autophagy In Crop Plants: What's New Beyond Arabidopsis?, Jie Tang, Diane C. Bassham 2019 Iowa State University

Autophagy In Crop Plants: What's New Beyond Arabidopsis?, Jie Tang, Diane C. Bassham

Diane Bassham

Autophagy is a major degradation and recycling pathway in plants. It functions to maintain cellular homeostasis and is induced by environmental cues and developmental stimuli. Over the past decade, the study of autophagy has expanded from model plants to crop species. Many features of the core machinery and physiological functions of autophagy are conserved among diverse organisms. However, several novel functions and regulators of autophagy have been characterized in individual plant species. In light of its critical role in development and stress responses, a better understanding of autophagy in crop plants may eventually lead to beneficial agricultural applications. Here, we ...


Selective Autophagy Of Bes1 Mediated By Dsk2 Balances Plant Growth And Survival, Trevor M. Nolan, Benjamin Brennan, Mengran Yang, Jiani Chen, Mingcai Zhang, Zhaohu Li, Xuelu Wang, Diane C. Bassham, Justin Walley, Yanhai Yin 2019 Iowa State University

Selective Autophagy Of Bes1 Mediated By Dsk2 Balances Plant Growth And Survival, Trevor M. Nolan, Benjamin Brennan, Mengran Yang, Jiani Chen, Mingcai Zhang, Zhaohu Li, Xuelu Wang, Diane C. Bassham, Justin Walley, Yanhai Yin

Diane Bassham

Plants encounter a variety of stresses and must fine-tune their growth and stress-response programs to best suit their environment. BES1 functions as a master regulator in the brassinosteroid (BR) pathway that promotes plant growth. Here, we show that BES1 interacts with the ubiquitin receptor protein DSK2 and is targeted to the autophagy pathway during stress via the interaction of DSK2 with ATG8, a ubiquitin-like protein directing autophagosome formation and cargo recruitment. Additionally, DSK2 is phosphorylated by the GSK3-like kinase BIN2, a negative regulator in the BR pathway. BIN2 phosphorylation of DSK2 flanking its ATG8 interacting motifs (AIMs) promotes DSK2-ATG8 interaction ...


Stochastic Optical Reconstruction Microscopy Imaging Of Microtubule Arrays In Intact Arabidopsis Thaliana Seedling, Bin Dong, Xiaochen Yang, Shaobin Zhu, Diane C. Bassham, Ning Fang 2019 Iowa State University

Stochastic Optical Reconstruction Microscopy Imaging Of Microtubule Arrays In Intact Arabidopsis Thaliana Seedling, Bin Dong, Xiaochen Yang, Shaobin Zhu, Diane C. Bassham, Ning Fang

Diane Bassham

Super-resolution fluorescence microscopy has generated tremendous success in revealing detailed subcellular structures in animal cells. However, its application to plant cell biology remains extremely limited due to numerous technical challenges, including the generally high fluorescence background of plant cells and the presence of the cell wall. In the current study, stochastic optical reconstruction microscopy (STORM) imaging of intact Arabidopsis thaliana seedling roots with a spatial resolution of 20–40 nm was demonstrated. Using the super-resolution images, the spatial organization of cortical microtubules in different parts of a whole Arabidopsis root tip was analyzed quantitatively, and the results show the dramatic ...


A Functional Unfolded Protein Response Is Required For Normal Vegetative Development, Yan Bao, Diane C. Bassham, Stephen H. Howell 2019 Iowa State University

A Functional Unfolded Protein Response Is Required For Normal Vegetative Development, Yan Bao, Diane C. Bassham, Stephen H. Howell

Genetics, Development and Cell Biology Publications

The unfolded protein response (UPR) is activated in plants in response to endoplasmic reticulum stress and plays an important role in mitigating stress damage. Multiple factors act in the UPR, including the membrane-associated transcription factor, BASIC LEUCINE ZIPPER 17 (bZIP17), and the membrane-associated RNA splicing factor, INOSITOL REQUIRING ENZYME1 (IRE1). We have analyzed an Arabidopsis (Arabidopsis thaliana) ire1a ire1b bzip17 triple mutant, with defects in stress signaling, and found that the mutant is also impaired in vegetative plant growth under conditions without externally applied stress. This raised the possibility that the UPR functions in plant development in the same manner ...


Arterial Distribution Of The Human Aorta: An Examination Of The Evolutionary, Developmental, And Physiological Bases Of Asymmetry., Brandon Oddo, Cooker Storm 2019 Pepperdine University

Arterial Distribution Of The Human Aorta: An Examination Of The Evolutionary, Developmental, And Physiological Bases Of Asymmetry., Brandon Oddo, Cooker Storm

Seaver College Research And Scholarly Achievement Symposium

The study of anatomy contends that “form follows function”; a disciplinary theme purporting that anatomical structures (i.e., cells, tissues, and organs) have a shape that serves its proper function. With this in mind, it is unclear why human arterial distribution off the aortic arch is asymmetrical, while the corresponding venous anatomy is symmetrical. We investigated the evolutionary, developmental, and physiological bases for the asymmetry of aortic arch branches in humans. First, we investigated the cardiovascular anatomy of ancestral species to determine if, and at what level, anatomical divergence (from aortic symmetry to asymmetry) occurs. Second, we examined the formation ...


Receptor Interacting Protein Kinase 3 (Rip3) Regulates Ipscs Generation Through Modulating Cell Cycle Progression Genes, Ahmad Al-Moujahed, Bo Tian, Nikolaos E. Efstathiou, Eleni K. Konstantinou, Mien Hoang, Haijiang Lin, Joan W. Miller, Demetrios G. Vavvas 2019 Harvard Medical School

Receptor Interacting Protein Kinase 3 (Rip3) Regulates Ipscs Generation Through Modulating Cell Cycle Progression Genes, Ahmad Al-Moujahed, Bo Tian, Nikolaos E. Efstathiou, Eleni K. Konstantinou, Mien Hoang, Haijiang Lin, Joan W. Miller, Demetrios G. Vavvas

Open Access Articles

The molecular mechanisms involved in induced pluripotent stem cells (iPSCs) generation are poorly understood. The cell death machinery of apoptosis-inducing caspases have been shown to facilitate the process of iPSCs reprogramming. However, the effect of other cell death processes, such as programmed necrosis (necroptosis), on iPSCs induction has not been studied. In this study, we investigated the role of receptor-interacting protein kinase 3 (RIP3), an essential regulator of necroptosis, in reprogramming mouse embryonic fibroblast cells (MEFs) into iPSCs. RIP3 was found to be upregulated in iPSCs compared to MEFs. Deletion of RIP3 dramatically suppressed the reprogramming of iPSCs (~82%). RNA-seq ...


Analyzing Neuronal Dendritic Trees With Convolutional Neural Networks, Olivier Trottier, Jonathon Howard 2019 Yale University

Analyzing Neuronal Dendritic Trees With Convolutional Neural Networks, Olivier Trottier, Jonathon Howard

Yale Day of Data

In the biological sciences, image analysis software are used to detect, segment or classify a variety of features encountered in living matter. However, the algorithms that accomplish these tasks are often designed for a specific dataset, making them hardly portable to accomplish the same tasks on images of different biological structures. Recently, convolutional neural networks have been used to perform complex image analysis on a multitude of datasets. While applications of these networks abound in the technology industry and computer science, use cases are not as common in the academic sciences. Motivated by the generalizability of neural networks, we aim ...


A Three State Model Can Explain The Dynamics Of Class Iv Drosophila Dendritic Tips, Sabyasachi Sutradhar 2019 Yale University

A Three State Model Can Explain The Dynamics Of Class Iv Drosophila Dendritic Tips, Sabyasachi Sutradhar

Yale Day of Data

No abstract provided.


Ninjurin1 Positively Regulates Osteoclast Development By Enhancing The Survival Of Prefusion Osteoclasts, Sung-Jin Bae, Min Wook Shin, Taekwon Son, Hye Shin. Lee, Ji Soo Chae, Sejin Jeon, Goo Taeg Oh, Kyu-Won Kim 2019 Seoul National University

Ninjurin1 Positively Regulates Osteoclast Development By Enhancing The Survival Of Prefusion Osteoclasts, Sung-Jin Bae, Min Wook Shin, Taekwon Son, Hye Shin. Lee, Ji Soo Chae, Sejin Jeon, Goo Taeg Oh, Kyu-Won Kim

Open Access Articles

Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1(-/-) mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis ...


The Essential Roles Of The Chromatin Factor Gon4l In Heart Development, Terin Elise Budine 2018 Washington University in St. Louis

The Essential Roles Of The Chromatin Factor Gon4l In Heart Development, Terin Elise Budine

Arts & Sciences Electronic Theses and Dissertations

Heart development and the genetic pathways underlying it are highly conserved among vertebrates. During heart development, an embryo must induce mesoderm formation, pattern the mesoderm, specify cardiomyocytes, increase the population of cardiomyocytes through proliferation, and pattern the cardiac chambers. It is becoming increasingly clear that chromatin modifications help mediate the complex processes of heart development by providing spatiotemporal regulation of gene expression. My thesis work focuses on characterizing functions of the chromatin factor Gonad-4-like (Gon4l), encoded by the gene ugly duckling (udu), in zebrafish heart development. Previous works established a requirement for Gon4l in the formation of many mesoderm derivatives ...


Genetic Basis Of Thermal Divergence In Saccharomyces Species, Xueying C. Li 2018 Washington University in St. Louis

Genetic Basis Of Thermal Divergence In Saccharomyces Species, Xueying C. Li

Arts & Sciences Electronic Theses and Dissertations

The genetic architecture of phenotypic divergence is a central question in evolutionary biology. Genetic architecture is impacted by whether evolution occurs through accumulation of many small-effect or a few large-effect changes, the relative contribution of coding and cis-regulatory changes, and the prevalence of epistatic effects. Our empirical understanding of the genetic basis of evolutionary change remains incomplete, largely because reproductive barriers limit genetic analysis to those phenotypes that distinguish closely related species. In this dissertation, I use hybrid genetic analysis to examine the basis of thermal divergence between two post-zygotically isolated species, Saccharomyces cerevisiae and S. uvarum. S. cerevisiae is ...


Digital Commons powered by bepress