Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 151 - 180 of 339

Full-Text Articles in Cell Biology

Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang Aug 2017

Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang

Graduate School of Biomedical Sciences Theses and Dissertations

All organisms have an internal clock with a defined period between repetitions of activities. The period for circadian clock in human is 24.5 hours, while in mouse and rat, it is 23.5 hours. However, all organisms are forced to be in synchronization with their environment. A major environmental force that resets the internal clock to 24 hours is light. This phenomenon is defined as “light entrainment” or “phase-setting”. It is unclear how this entrainment process occurs. Studies from this laboratory indicate a role for two neuronal calcium sensor proteins: Neurocalcin  (NCALD) and S100B. For these two genes, mRNA as …


Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz Aug 2017

Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz

Graduate School of Biomedical Sciences Theses and Dissertations

Human papillomaviruses are a vast family of double-stranded DNA viruses containing non-carcinogenic and carcinogenic types, whose crucial differences remain unknown, except for the difference in the frequency of DNA replication. The human papillomavirus (HPV) E2 protein regulates the initiation of viral DNA replication and transcription. Its recognition and binding to four 12 bp palindromic sequences in the viral origin is essential for its function. Little is known about the DNA binding mechanism of the E2 protein found in HPV types that have low risk for oncogenicity (low-risk) as well as the roles of various elements of the individual binding sites. …


Optimizing A Method For Simultaneous Recovery Of Proteins And Dna From Fingerprints, Steven Kranes Aug 2017

Optimizing A Method For Simultaneous Recovery Of Proteins And Dna From Fingerprints, Steven Kranes

Student Theses

DNA testing on touched objects is a valuable tool in forensic investigations, but DNA is usually present in low amounts, causing poor STR typing results. For touch DNA evidence, there is a clear need for additional individualization, especially for highly probative samples. This could be achieved by testing genetically variable proteins. The goal of this project was to develop a DNA/protein co-extraction method to facilitate DNA and protein testing on the same evidence item. Existing DNA extraction methods were carefully adjusted to allow for downstream mass spectrometry analysis. Initial experiments on saliva and fingerprints placed on glass suggested that trypsin …


The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas Jul 2017

The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas

Doctoral Dissertations

The fact that plants cannot use nitrogen in the gaseous form makes them dependent on the levels of usable nitrogen forms in the soil. Legumes overcome nitrogen limitation by entering a symbiotic association with rhizobia, soil bacteria that convert atmospheric nitrogen into usable ammonia. In root nodules, bacteria are internalized by host plant cells inside an intracellular compartment called the symbiosome where they morphologically differentiate into nitrogen-fixing forms by symbiosome-secreted host proteins. In this project, I explained the host proteins required to maintain bacterial symbionts and described their delivery to the symbiosome. I showed that the SYNTAXIN 132 (SYP132) gene …


Cellular/Molecular Analysis Of Interspecies Sterile Male Hybrids In Drosophila, Rachelle L. Kanippayoor Jun 2017

Cellular/Molecular Analysis Of Interspecies Sterile Male Hybrids In Drosophila, Rachelle L. Kanippayoor

Electronic Thesis and Dissertation Repository

Over time, genetic differences can accumulate between populations that are geographically separated. This genetic divergence can lead to the evolution of reproductive isolating mechanisms that reduce gene flow between the populations and, upon secondary contact, result in distinct species. The process of speciation is, thus, what accounts for the multitude of species that contribute to the rich biodiversity on Earth. Interspecies hybrid sterility is a postzygotic isolating mechanism that affects the development of hybrids, rendering them sterile. A notable trend, known as Haldane's Rule, describes that heterogametic individual (e.g. males in Drosophila) are more susceptible to sterility than homogametic …


The 'Pseudomonas Aeruginosa' Psl Polysaccharide Is A Social But Noncheatable Trait In Biofilms, Yasuhiko Irie, Aled E. Roberts, Kasper N. Kragh, Vernita D. Gordon, Jaime B. Hutchison, Rosalind J. Allen, Gavin Melaugh, Thomas Bjarnsholt, Stuart A. West, Stephen P. Diggle Jun 2017

The 'Pseudomonas Aeruginosa' Psl Polysaccharide Is A Social But Noncheatable Trait In Biofilms, Yasuhiko Irie, Aled E. Roberts, Kasper N. Kragh, Vernita D. Gordon, Jaime B. Hutchison, Rosalind J. Allen, Gavin Melaugh, Thomas Bjarnsholt, Stuart A. West, Stephen P. Diggle

Biology Faculty Publications

Extracellular polysaccharides are compounds secreted by microorganisms into the surrounding environment, and they are important for surface attachment and maintaining structural integrity within biofilms. The social nature of many extracellular polysaccharides remains unclear, and it has been suggested that they could function as either cooperative public goods or as traits that provide a competitive advantage. Here, we empirically tested the cooperative nature of the PSL polysaccharide, which is crucial for the formation of biofilms in Pseudomonas aeruginosa. We show that (i) PSL is not metabolically costly to produce; (ii) PSL provides populationlevel benefits in biofilms, for both growth and antibiotic …


Characterization Of E-Cadherin Regulation In Response To Zeb1 Inhibition In Endometrial Cancer Cell Lines, Chidozie Paul Chukwu May 2017

Characterization Of E-Cadherin Regulation In Response To Zeb1 Inhibition In Endometrial Cancer Cell Lines, Chidozie Paul Chukwu

Graduate School of Biomedical Sciences Theses and Dissertations

Epithelial to mesenchymal transition (EMT) is the process in which cells lose their epithelial structure during gastrulation. This process also affects the migration and movement of tumor cells and promotes invasion and metastases of endometrial carcinomas. Down-regulation of E-cadherin (CDH1) by transcription factors is the key target of EMT modulators and is achieved mainly by ZEB1 (zinc finger E-box binding homeobox 1). Current research looking at restoration of E-cadherin expression in vitro involves the use of small molecules such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors. Trichostatin A (TSA) and small interfering ribonucleic acid (siRNA) are tools that …


The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner May 2017

The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner

Graduate School of Biomedical Sciences Theses and Dissertations

Translation is an essential process for protein expression in both eukaryotes and prokaryotes. Like any cellular process, translational factors are prone to damage when the cell is under stress. One common stressor that nearly all cells may experience is abnormal levels of reactive oxygen species (ROS). Damage caused by ROS has been associated with disease ranging from neurodegenerative impairments, to the aging process of cells. These oxygen radicals are capable of damaging a litany of molecules including nucleic acids, and molecular factors involved in translation. It has been shown that tRNA can be cleaved upon ROS-induced stress and these fragments …


Proteomic Identification Of Histone Post-Translational Modifications Induced By Dna Double-Strand Breaks And Novel Proteins Involved In The Dna Damage Response, Pingping Wang May 2017

Proteomic Identification Of Histone Post-Translational Modifications Induced By Dna Double-Strand Breaks And Novel Proteins Involved In The Dna Damage Response, Pingping Wang

Dissertations & Theses (Open Access)

Inaccurate repair of DNA double-strand breaks (DSBs) can lead to DNA mutation and chromosome rearrangements, causing human diseases such as cancer. Although we know the basic mechanisms of DSB repair, the added complexities in the chromatin context are unclear. This is partially due to the lack of unbiased systems for identifying proteins and post-translational modifications (PTMs) involved in DSB repair. In this work, we established a novel method, termed DSB-ChAP-MS (Double Strand Break-Chromatin Affinity Purification with Mass Spectrometry), for the affinity purification of a sequence-specific single copy endogenous chromosomal locus containing a DSB, followed by the proteomic identification of enriched …


Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal May 2017

Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal

Dissertations & Theses (Open Access)

Aging brings a gradual decline in molecular fidelity and biological functionality, resulting in age related phenotypes and diseases. Despite continued efforts to uncover the conserved aging pathways among eukaryotes, exact molecular causes of aging are still poorly understood. One of the most important hallmarks of aging is increased genomic instability. However, there remains much ambiguity as to the cause. I am studying the replicative life span (RLS) of the genetically tractable model organism Saccharomyces cerevisiae, or budding yeast using the innovative “mother enrichment program” as the method to isolate unparalleled numbers of aged yeast cells to investigate the molecular changes …


Environmental Changes Turn On The Sinorhizobium Melitloti Exor-Exos/Chvi (Rsi) Host Invasion Switch, Shari N. Walcott Feb 2017

Environmental Changes Turn On The Sinorhizobium Melitloti Exor-Exos/Chvi (Rsi) Host Invasion Switch, Shari N. Walcott

Dissertations, Theses, and Capstone Projects

The free-living Gram-negative soil bacterium, Sinorhizobium meliloti, must switch into its host-invading form in order to infect the root hairs of the host plant, alfalfa (Medicago sativa), and establish a nitrogen-fixing symbiosis. The activation of the switch is believed to occur inside the infection chamber that is formed by curling of the root hairs. It is not fully understood what signals in the environment of the root hairs trigger and infection chamber S. meliloti to switch into a host-invading form since these signals were not extensively examined until now. This switch can be observed directly, due to …


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) …


Real-Time Quantitative Pcr To Demonstrate Gene Expression In An Undergraduate Lab, Abijeet Singh Mehta, Amit Singh Jan 2017

Real-Time Quantitative Pcr To Demonstrate Gene Expression In An Undergraduate Lab, Abijeet Singh Mehta, Amit Singh

Biology Faculty Publications

The objective of this teaching note is to develop a laboratory exercise, which allows students to get a hands-on experience of a molecular biology technique to analyze gene expression. The short duration of the biology laboratory for an undergraduate curriculum is the biggest challenge with the development of new labs. An important part of cell biology or molecular biology undergraduate curriculum is to study gene expression. There are many labs to study gene expression in qualitative manner. The commonly used reporter gene expression studies are primarily qualitative. However, there is no hands-on experience exercise to quantitatively determine gene expression. Therefore, …


Effects Of Posttranslational Modification Of Transcription Factor Gli-Similar 3 By Sumoylation On Insulin Transcription In Pancreatic Β Cells, Tyler M. Hoard Jan 2017

Effects Of Posttranslational Modification Of Transcription Factor Gli-Similar 3 By Sumoylation On Insulin Transcription In Pancreatic Β Cells, Tyler M. Hoard

Murray State Theses and Dissertations

The ability to control blood glucose levels is a fundamental component of vertebrates. In these organisms, blood glucose homeostasis is achieved through a fine-tuned mechanism that largely involves the secretion of hormones from the endocrine pancreas into the bloodstream. These hormones include glucagon, which is secreted by the α cells of the pancreas and initiates the release of glucose into the bloodstream through gluconeogenesis in the liver, and insulin, which is secreted from the β cells and signals the uptake of excess blood glucose by the peripheral tissue. Gli-similar 3 (Glis3) is a transcription factor that has previously been shown …


Examining The Role Of Grp And Lik1 In Wall Associated Kinase (Wak) Perception Of Pectin In The Plant Cell Wall, Jack Ryan Mitchell Jan 2017

Examining The Role Of Grp And Lik1 In Wall Associated Kinase (Wak) Perception Of Pectin In The Plant Cell Wall, Jack Ryan Mitchell

Honors Projects

Wall associated kinases (WAKs) are cell membrane bound receptor kinases that bind pectin and pectin fragments (OGs).The binding of WAKs to pectin sends a growth signal required for cell elongation and plant development. WAKs bind OGs with higher affinity than native pectin and instead activate a stress response. Glycine rich proteins (GRPs) are secreted cell wall proteins of unknown function. Seven GRPs with 65% sequence similarity are coded on a 90kb locus of Arabidopsis chromosome 2. GRP3 and WAK1 have been shown to bind in vitro, but single null mutations have no discernible phenotype, suggesting that the GRPs are redundant. …


An Undergraduate Cell Biology Lab: Western Blotting To Detect Proteins From Drosophila Eye, Neha Gogia, Ankita Sarkar, Amit Singh Jan 2017

An Undergraduate Cell Biology Lab: Western Blotting To Detect Proteins From Drosophila Eye, Neha Gogia, Ankita Sarkar, Amit Singh

Biology Faculty Publications

We have developed an undergraduate laboratory to allow detection and localization of proteins in the compound eye of Drosophila melanogaster, a.k.a fruit fly. This lab was a part of the undergraduate curriculum of the cell biology laboratory course aimed to demonstrate the use of Western Blotting technique to study protein localization in the adult eye of Drosophila. Western blotting, a two-day laboratory exercise, can be used to detect the presence of proteins of interests from total protein isolated from a tissue. The first day involves isolation of proteins from the tissue and SDS-PAGE (sodium dodecyl sulfate-polyacrylamide) gel …


The Localization And Function Of Novel Tetrahymena Thermophila Cytoskeletal Genes Bbc29 And Bbc39, Emily K. Moore, Nicole C. Zanolli Jan 2017

The Localization And Function Of Novel Tetrahymena Thermophila Cytoskeletal Genes Bbc29 And Bbc39, Emily K. Moore, Nicole C. Zanolli

Undergraduate Research Symposium Posters

Ciliary function is known to play an important role in many human conditions, including chronic sinus and pulmonary diseases and problems with infertility. Cilia are cytoskeletal structures that protrude from the cell body to facilitate movement. Ciliary structure is conserved throughout eukaryotes, from unicellular to multicellular organisms, including humans. A clear understanding the proteins that compose cilia and how they interact with one another will increase our knowledge about important cytoskeletal elements. Because cilia are difficult to study in multicellular organisms, the unicellular eukaryote Tetrahymena thermophila serves as a useful model for the study of cytoskeletal genes, due to their …


Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera Jan 2017

Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera

Honors Undergraduate Theses

In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 μm in the lateral and 3.6 μm in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single …


Cullin-4 Regulates Wingless And Jnk Signaling-Mediated Cell Death In The Drosophila Eye., Meghana Tare, Ankita Sarkar, Shimpi Bedi, Madhuri Kango-Singh, Amit Singh Dec 2016

Cullin-4 Regulates Wingless And Jnk Signaling-Mediated Cell Death In The Drosophila Eye., Meghana Tare, Ankita Sarkar, Shimpi Bedi, Madhuri Kango-Singh, Amit Singh

Biology Faculty Publications

In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, …


The Fate Of Icd-1 During Misfolded Protein Induced Apoptosis In Caenorhabditis Elegans, Kyle H. Perez Dec 2016

The Fate Of Icd-1 During Misfolded Protein Induced Apoptosis In Caenorhabditis Elegans, Kyle H. Perez

Senior Honors Projects, 2010-2019

Severe misfolded protein stress initiates cellular responses that often result in the death of the affected cell, typically by apoptosis. An essential aspect of apoptosis is caspase-mediated cleavage of proteins that, once cleaved, further propagate death. One heterodimeric structure putatively targeted in this process in the nascent polypeptide-associated complex (NAC), a translational chaperone thought to help prevent misfolded protein stress in the ER. The purpose of this investigation was to determine whether the beta subunit of the NAC in C. elegans (ICD-1) is cleaved during the induction of apoptosis, with the hypothesis that ICD-1 is cleaved during stressed-induced apoptosis to …


Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang Dec 2016

Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang

Dissertations & Theses (Open Access)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes induce …


Punctuated Evolution Within A Eurythermic Genus (Mesenchytraeus) Of Segmented Worms: Genetic Modification Of The Glacier Ice Worm F1f0 Atp Synthase, Shirley A. Lang Dec 2016

Punctuated Evolution Within A Eurythermic Genus (Mesenchytraeus) Of Segmented Worms: Genetic Modification Of The Glacier Ice Worm F1f0 Atp Synthase, Shirley A. Lang

Graduate School of Biomedical Sciences Theses and Dissertations

Segmented worms (Annelida) are among the most successful animal inhabitants of extreme environments worldwide. An unusual group of Mesenchytraeus worms endemic to the Pacific Northwest of North America occupy geographically proximal ecozones ranging from low elevation temperate rainforests to high altitude glaciers. Along this altitudinal transect, Mesenchytraeus representatives from disparate habitat types were collected and subjected to deep mitochondrial and nuclear phylogenetic analyses. Evidence presented here employing modern bioinformatic analyses (i.e., maximum likelihood, Bayesian inference, multi-species coalescent) supports a Mesenchytraeus “explosion” in the upper Miocene (5-10 million years ago) that gave rise to ice, snow and terrestrial worms, derived from …


Replication-Transciption Switch In Human Mitochondria, Karen Agaronyan Oct 2016

Replication-Transciption Switch In Human Mitochondria, Karen Agaronyan

Graduate School of Biomedical Sciences Theses and Dissertations

Coordinated replication and expression of mitochondrial genome is critical for metabolically active cells during various stages of development. However, it is not known whether replication and transcription can occur simultaneously without interfering with each other and whether mtDNA copy number can be regulated by the transcription machinery. Human mitochondrial RNA polymerase (mtRNAP) is a central enzyme involved in gene expression in mitochondria. It generates genome-size polycistronic transcripts and also makes replication primers at two origins of replication. MtRNAP is distantly related to phage T7 RNAP. While T7 RNAP is optimized to produce large amounts of transcripts to overcompete the bacterial …


Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang Sep 2016

Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang

Dissertations, Theses, and Capstone Projects

An essential first step in bacterial division is the assembly of a cytokinetic ring (Z-ring) formed by the tubulin-like FtsZ at midcell. The highly conserved core domain of FtsZ has been reported to mediate assembly of FtsZ polymers in vivo and in vitro. Species-specific differences in the FtsZ C-terminal domain such as the FtsZ CTV region and interactions with several modulatory proteins such as ZapC and ZapD, restricted to certain bacterial classes, also serve as key determinants of FtsZ protofilament bundling. Here, we characterize (i) the roles of the FtsZ CTV region in mediating both longitudinal and lateral interactions …


Beyond Bivariate Correlations: Three-Block Partial Least Squares Illustrated With Vegetation, Soil, And Topography, Daehyun Kim, Thomas J. Dewitt, César S. B. Costa, John A. Kupfer, Ryan W. Mcewan, J. Anthony Stallins Sep 2016

Beyond Bivariate Correlations: Three-Block Partial Least Squares Illustrated With Vegetation, Soil, And Topography, Daehyun Kim, Thomas J. Dewitt, César S. B. Costa, John A. Kupfer, Ryan W. Mcewan, J. Anthony Stallins

Ryan McEwan

Ecologists, particularly those engaged in biogeomorphic studies, often seek to connect data from three or more domains. Using three-block partial least squares regression, we present a procedure to quantify and define bi-variance and tri-variance of data blocks related to plant communities, their soil parameters, and topography. Bi-variance indicates the total amount of covariation between these three domains taken in pairs, whereas tri-variance refers to the common variance shared by all domains. We characterized relationships among three domains (plant communities, soil properties, topography) for a salt marsh, four coastal dunes, and two temperate forests spanning several regions in the world. We …


Nucleoporin-Mediated Regulation Of The Kcnq1ot1 Imprinted Domain, Saqib Sachani Aug 2016

Nucleoporin-Mediated Regulation Of The Kcnq1ot1 Imprinted Domain, Saqib Sachani

Electronic Thesis and Dissertation Repository

Genomic imprinting is an epigenetic phenomenon that restricts gene expression to one parental allele while the other copy is silent. How this duality is regulated is not fully understood. Using the Kcnq1ot1 imprinted domain as a model, previous work in the laboratory identified nucleoporin 107 as a candidate regulator of imprinted domain regulation. Within the Kcnq1ot1 domain resides the imprinting control region, the paternally expressed Kcnq1ot1 (Kcnq1 opposite transcript 1) noncoding RNA, nine maternal-expressed protein-coding genes, as well as genes that escape imprint regulation. On the maternal allele, the Kcnq1ot1 imprinting control region is methylated, silencing the embedded Kcnq1ot1 …


Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots Aug 2016

Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots

STAR Program Research Presentations

The CRISPR-Cas system is an adaptive immune system found in bacteria which helps protect against the invasion of other microorganisms. This system induces double stranded breaks at precise genomic loci (1) in which repairs are initiated and insertions of a target are completed in the process. This mechanism can be used in eukaryotic cells in combination with sgRNAs (1) as a tool for genome editing. By using this CRISPR-Cas system, in addition to the “safe harbor locus,” ROSAβ26, the incorporation of a target gene into a site that is not susceptible to gene silencing effects can be achieved through few …


Identification And Characterization Of Heat Shock Transcription Factor 1 Isoforms In Orange-Spotted Grouper (Epinephelus Coioides), Tingyu Wang Jun 2016

Identification And Characterization Of Heat Shock Transcription Factor 1 Isoforms In Orange-Spotted Grouper (Epinephelus Coioides), Tingyu Wang

2nd International Conference of Fish & Shellfish Immunology

No abstract provided.


Patterning Defects In Silkworm Embryos Analysed Through Cuticle Preparations, Amit Singh, Madhuri Kango-Singh, K. P. Gopinathan Jun 2016

Patterning Defects In Silkworm Embryos Analysed Through Cuticle Preparations, Amit Singh, Madhuri Kango-Singh, K. P. Gopinathan

Madhuri Kango-Singh

The mulberry silkworm, Bombyx mori, a holometabolous lepidopteran insect, has a metameric body plan. Due to its functional adaptation, B. mori presents some unique deviations in its pal/ern from the evolutionarily advanced dipteran insect, Drosophila melanogaster. Previous studies on mutant phenotype analysis in B. mori have been carried out in late stages of larval development. Here we employ, the cuticle preparation approach during embryonic development to study morphological landmarks associated with B. mori, Eri, another race a/silkworm, and pattern defects associated with Ekp mutant of B.mori. The homeotic mutant Ekp, generates ectopic abdominallegs, a feature …


Eye Suppression, A Novel Function Of Teashirt, Requires Wingless Signaling, Amit Singh, Madhuri Kango-Singh, Y. Henry Sun Jun 2016

Eye Suppression, A Novel Function Of Teashirt, Requires Wingless Signaling, Amit Singh, Madhuri Kango-Singh, Y. Henry Sun

Madhuri Kango-Singh

Teashirt (tsh) encodes a Drosophila zinc-finger protein. Misexpression of tsh has been shown to induce ectopic eye formation in the antenna. We report that tsh can suppress eye development. This novel function of tsh is due to the induction of homothorax (hth), a known repressor of eye development, and requires Wingless (WG) signaling. Interestingly, tsh has different functions in the dorsal and ventral eye, suppressing eye development close to the ventral margin, while promoting eye development near the dorsal margin. It affects both growth of eye disc and retinal cell differentiation.