Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cell Biology

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty Jun 2022

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty

Undergraduate Research Symposium

Salmonella is a relatively abundant, virulent species of bacteria that is most known for spreading gastrointestinal diseases through food. These illnesses result in approximately 1.35 million infections, including over 25,000 hospitalizations each year, in the U.S. alone (CDC.gov). As antibiotic resistance becomes an increasingly urgent public health problem, the importance of developing alternative treatment methods is only becoming more crucial. One of the genes responsible for this virulence is known as hilA. HilA is the main transcriptional regulator of Salmonella Pathogenicity Island-1 gene (UniProt). SPI-1 plays an important role in the invasion of Salmonella into epithelial cells. The proteins encoded …


Tick Extracellular Vesicles Enable Arthropod Feeding And Promote Distinct Outcomes Of Bacterial Infection, Adela S. Oliva Chávez, Xiaowei Wang, Liron Marnin, Nathan K. Archer, Holly L. Hammond, Erin E. Mcclure Carroll, Dana K. Shaw, Brenden G. Tully, Amanda D. Buskirk, Shelby L. Ford, L. Rainer Butler, Preeti Shahi, Kateryna Morozova, Cristina C. Clement, Lauren Lawres, Anya J. O'Neal, Choukri Ben Mamoun, Kathleen L. Mason, Brandi E. Hobbs, Glen A. Scoles, Eileen M. Barry, Daniel E. Sonenshine, Utpal Pal, Jesus G. Valenzuela, Marcelo B. Sztein, Marcela F. Pasetti, Michael L. Levin, Michail Kotsyfakis, Steven M. Jay, Jason F. Huntley, Lloyd S. Miller, Laura Santambrogio, Joao H.F. Pedra Jan 2021

Tick Extracellular Vesicles Enable Arthropod Feeding And Promote Distinct Outcomes Of Bacterial Infection, Adela S. Oliva Chávez, Xiaowei Wang, Liron Marnin, Nathan K. Archer, Holly L. Hammond, Erin E. Mcclure Carroll, Dana K. Shaw, Brenden G. Tully, Amanda D. Buskirk, Shelby L. Ford, L. Rainer Butler, Preeti Shahi, Kateryna Morozova, Cristina C. Clement, Lauren Lawres, Anya J. O'Neal, Choukri Ben Mamoun, Kathleen L. Mason, Brandi E. Hobbs, Glen A. Scoles, Eileen M. Barry, Daniel E. Sonenshine, Utpal Pal, Jesus G. Valenzuela, Marcelo B. Sztein, Marcela F. Pasetti, Michael L. Levin, Michail Kotsyfakis, Steven M. Jay, Jason F. Huntley, Lloyd S. Miller, Laura Santambrogio, Joao H.F. Pedra

Biological Sciences Faculty Publications

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting …


Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …