Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Immunology and Infectious Disease

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 41

Full-Text Articles in Cell Biology

Molecular Regulation Of The Salicylic Acid Hormone Pathway In Plants Under Changing Environmental Conditions, Christina A. M. Rossi, Eric J. R. Marchetta, Jong Hum Kim, Christian Castroverde Jan 2023

Molecular Regulation Of The Salicylic Acid Hormone Pathway In Plants Under Changing Environmental Conditions, Christina A. M. Rossi, Eric J. R. Marchetta, Jong Hum Kim, Christian Castroverde

Biology Faculty Publications

Salicylic acid (SA) is a central plant hormone mediating immunity, growth, and development. Recently, studies have highlighted the sensitivity of the SA pathway to changing climatic factors and the plant microbiome. Here we summarize organizing principles and themes in the regulation of SA biosynthesis, signaling, and metabolism by changing abiotic/biotic environments, focusing on molecular nodes governing SA pathway vulnerability or resilience. We especially highlight advances in the thermosensitive mechanisms underpinning SA-mediated immunity, including differential regulation of key transcription factors (e.g., CAMTAs, CBP60g, SARD1, bHLH059), selective protein–protein interactions of the SA receptor NPR1, and dynamic phase separation of the recently identified …


Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty Jun 2022

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty

Undergraduate Research Symposium

Salmonella is a relatively abundant, virulent species of bacteria that is most known for spreading gastrointestinal diseases through food. These illnesses result in approximately 1.35 million infections, including over 25,000 hospitalizations each year, in the U.S. alone (CDC.gov). As antibiotic resistance becomes an increasingly urgent public health problem, the importance of developing alternative treatment methods is only becoming more crucial. One of the genes responsible for this virulence is known as hilA. HilA is the main transcriptional regulator of Salmonella Pathogenicity Island-1 gene (UniProt). SPI-1 plays an important role in the invasion of Salmonella into epithelial cells. The proteins encoded …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Bone Morphogenetic Proteins Shape TReg Cells, Piotr Kraj Jan 2022

Bone Morphogenetic Proteins Shape TReg Cells, Piotr Kraj

Biological Sciences Faculty Publications

The transforming growth factor-β (TGF-β) family includes cytokines controlling cell behavior, differentiation and homeostasis of various tissues including components of the immune system. Despite well recognized importance of TGF-β in controlling T cell functions, the immunomodulatory roles of many other members of the TGF-β cytokine family, especially bone morphogenetic proteins (BMPs), start to emerge. Bone Morphogenic Protein Receptor 1α (BMPR1α) is upregulated by activated effector and Foxp3+ regulatory CD4+ T cells (Treg cells) and modulates functions of both of these cell types. BMPR1α inhibits generation of proinflammatory Th17 cells and sustains peripheral Treg cells. This finding underscores the importance of …


Bcr Affinity Influences T-B Interactions And B Cell Development In Secondary Lymphoid Organs, Alec J. Wishnie, Tzippora Chwat-Edelstein, Mary Attaway, Bao Q. Vuong Jul 2021

Bcr Affinity Influences T-B Interactions And B Cell Development In Secondary Lymphoid Organs, Alec J. Wishnie, Tzippora Chwat-Edelstein, Mary Attaway, Bao Q. Vuong

Publications and Research

B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre- Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B …


Immunological And Hematological Outcomes Following Protracted Low Dose/Low Dose Rate Ionizing Radiation And Simulated Microgravity, Amber M. Paul, Eliah G. Overbey, Willian A. Da Silveira, Nathaniel Szewczyk, Nina C. Nishiyama, Michael J. Pecaut, Sulekha Anand, Jonathan M. Galazka, Xiao Wen Mao Jun 2021

Immunological And Hematological Outcomes Following Protracted Low Dose/Low Dose Rate Ionizing Radiation And Simulated Microgravity, Amber M. Paul, Eliah G. Overbey, Willian A. Da Silveira, Nathaniel Szewczyk, Nina C. Nishiyama, Michael J. Pecaut, Sulekha Anand, Jonathan M. Galazka, Xiao Wen Mao

Publications

Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) …


Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He May 2021

Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He

University Scholar Projects

Ependymoma is a primary solid tumor of the central nervous system. Supratentorial ependymoma (ST-EPN), a subtype of ependymomas, is driven by an oncogenic fusion between the ZFTA and RELA genes in 70% of cases. We introduced this fusion into neural progenitor cells of mice embryos via in utero electroporation of a non-viral binary piggyBac transposon system containing ZFTA-RELA. From preliminary data in the LoTurco lab, inducing the expression of ZFTA-RELA into different neural progenitor cells produces tumors of varying lethality and cellular composition. To define the cellular composition and subclonal diversity of ST-EPN tumors, we used single cell RNA-sequencing to …


Tetraspanins As Potential Therapeutic Candidates For Targeting Flaviviruses, Waqas Ahmed, Girish Neelakanta, Hameeda Sultana Jan 2021

Tetraspanins As Potential Therapeutic Candidates For Targeting Flaviviruses, Waqas Ahmed, Girish Neelakanta, Hameeda Sultana

Biological Sciences Faculty Publications

Tetraspanin family of proteins participates in numerous fundamental signaling pathways involved in viral transmission, virus-specific immunity, and virus-mediated vesicular trafficking. Studies in the identification of novel therapeutic candidates and strategies to target West Nile virus, dengue and Zika viruses are highly warranted due to the failure in development of vaccines. Recent evidences have shown that the widely distributed tetraspanin proteins may provide a platform for the development of novel therapeutic approaches. In this review, we discuss the diversified and important functions of tetraspanins in exosome/extracellular vesicle biology, virus-host interactions, virus-mediated vesicular trafficking, modulation of immune mechanism(s), and their possible role(s) …


Tick Extracellular Vesicles Enable Arthropod Feeding And Promote Distinct Outcomes Of Bacterial Infection, Adela S. Oliva Chávez, Xiaowei Wang, Liron Marnin, Nathan K. Archer, Holly L. Hammond, Erin E. Mcclure Carroll, Dana K. Shaw, Brenden G. Tully, Amanda D. Buskirk, Shelby L. Ford, L. Rainer Butler, Preeti Shahi, Kateryna Morozova, Cristina C. Clement, Lauren Lawres, Anya J. O'Neal, Choukri Ben Mamoun, Kathleen L. Mason, Brandi E. Hobbs, Glen A. Scoles, Eileen M. Barry, Daniel E. Sonenshine, Utpal Pal, Jesus G. Valenzuela, Marcelo B. Sztein, Marcela F. Pasetti, Michael L. Levin, Michail Kotsyfakis, Steven M. Jay, Jason F. Huntley, Lloyd S. Miller, Laura Santambrogio, Joao H.F. Pedra Jan 2021

Tick Extracellular Vesicles Enable Arthropod Feeding And Promote Distinct Outcomes Of Bacterial Infection, Adela S. Oliva Chávez, Xiaowei Wang, Liron Marnin, Nathan K. Archer, Holly L. Hammond, Erin E. Mcclure Carroll, Dana K. Shaw, Brenden G. Tully, Amanda D. Buskirk, Shelby L. Ford, L. Rainer Butler, Preeti Shahi, Kateryna Morozova, Cristina C. Clement, Lauren Lawres, Anya J. O'Neal, Choukri Ben Mamoun, Kathleen L. Mason, Brandi E. Hobbs, Glen A. Scoles, Eileen M. Barry, Daniel E. Sonenshine, Utpal Pal, Jesus G. Valenzuela, Marcelo B. Sztein, Marcela F. Pasetti, Michael L. Levin, Michail Kotsyfakis, Steven M. Jay, Jason F. Huntley, Lloyd S. Miller, Laura Santambrogio, Joao H.F. Pedra

Biological Sciences Faculty Publications

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting …


Characterization Of A Mycoplasma Pneumoniae Cards Toxin Mutant, Nikaash Pasnoori May 2020

Characterization Of A Mycoplasma Pneumoniae Cards Toxin Mutant, Nikaash Pasnoori

Honors Scholar Theses

Mycoplasma pneumoniae is a high-burden pathogen which causes mild to significant infections of the respiratory system. According to the CDC, an estimated two million cases occur yearly in the United States alone, demonstrating the widespread effect of the pathogen. In addition to being the cause of respiratory infections, M. pneumoniae has also been implicated in exacerbating pre-existing asthma conditions. These morbidities make finding a vaccine candidate a vital part of easing the healthcare burden caused by the pathogen. The current mechanism of infection is unknown, but recent evidence points to the Community Acquired Respiratory Distress Syndrome (CARDS) toxin as being …


Histidine-Triad Hydrolases Provide Resistance To Peptide-Nucleotide Antibiotics., Eldar Yagmurov, Darya Tsibulskaya, Alexey Livenskyi, Marina Serebryakova, Yury I Wolf, Sergei Borukhov, Konstantin Severinov, Svetlana Dubiley Apr 2020

Histidine-Triad Hydrolases Provide Resistance To Peptide-Nucleotide Antibiotics., Eldar Yagmurov, Darya Tsibulskaya, Alexey Livenskyi, Marina Serebryakova, Yury I Wolf, Sergei Borukhov, Konstantin Severinov, Svetlana Dubiley

Rowan-Virtua School of Osteopathic Medicine Departmental Research

The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like …


The Signaling Pathways Of Metallothionein-Mediated Chemotaxis In Breast Cancer, Jennifer Messina May 2019

The Signaling Pathways Of Metallothionein-Mediated Chemotaxis In Breast Cancer, Jennifer Messina

University Scholar Projects

Metallothionein (MT) is a small, thiol rich protein released into the extracellular environment in response to stress. Elevated expression of MT has been linked to many inflammatory diseases including inflammatory bowel diseases, diabetes, and cancer. In breast cancer, high expression of MT has been associated with poor patient prognosis. Previous studies have shown that MT acts as a chemoattractant in lymphocytes, and that UC1MT, a monoclonal anti-MT antibody, can block this chemotactic response. In addition, it has been shown that both Cholera toxin and Pertussis toxin, which are known antagonists of G-protein coupled receptors, can inhibit MT-mediated chemotaxis. Here, I …


The Signaling Pathways Of Metallothionein-Mediated Chemotaxis In Breast Cancer, Jennifer Messina May 2019

The Signaling Pathways Of Metallothionein-Mediated Chemotaxis In Breast Cancer, Jennifer Messina

Honors Scholar Theses

Metallothionein (MT) is a small, thiol rich protein released into the extracellular environment in response to stress. Elevated expression of MT has been linked to many inflammatory diseases including inflammatory bowel diseases, diabetes, and cancer. In breast cancer, high expression of MT has been associated with poor patient prognosis. Previous studies have shown that MT acts as a chemoattractant in lymphocytes, and that UC1MT, a monoclonal anti-MT antibody, can block this chemotactic response. In addition, it has been shown that both Cholera toxin and Pertussis toxin, which are known antagonists of G-protein coupled receptors, can inhibit MT-mediated chemotaxis. Here, I …


Enhancement Of Immune Response Against Bordetella Spp. By Disrupting Immunomodulation, Monica C. Gestal, Laura K. Howard, Kalyan Dewan, Hannah M. Johnson, Mariette Barbier, Clare Bryant, Illiassou Hamidou Soumana, Israel Rivera, Bodo Lina, Uriel Blas-Machado, Eric T. Harvill Jan 2019

Enhancement Of Immune Response Against Bordetella Spp. By Disrupting Immunomodulation, Monica C. Gestal, Laura K. Howard, Kalyan Dewan, Hannah M. Johnson, Mariette Barbier, Clare Bryant, Illiassou Hamidou Soumana, Israel Rivera, Bodo Lina, Uriel Blas-Machado, Eric T. Harvill

Faculty & Staff Scholarship

Well-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the …


Systemic Inhibition Of Tissue-Nonspecific Alkaline Phosphatase Alters The Brain-Immune Axis In Experimental Sepsis, Allison L. Brichacek, Stanely A. Benkovic, Sreeparna Chakraborty, Divine C. Nwafor, Wei Wang, Sujung Jun, Duaa Dakhlallah, Werner Geldenhuys, Anthony B. Pinkerton, José Luis Millán, Candice M. Brown Jan 2019

Systemic Inhibition Of Tissue-Nonspecific Alkaline Phosphatase Alters The Brain-Immune Axis In Experimental Sepsis, Allison L. Brichacek, Stanely A. Benkovic, Sreeparna Chakraborty, Divine C. Nwafor, Wei Wang, Sujung Jun, Duaa Dakhlallah, Werner Geldenhuys, Anthony B. Pinkerton, José Luis Millán, Candice M. Brown

Faculty & Staff Scholarship

Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme present in many cells and tissues, including the central nervous system. Yet its functions at the brain-immune axis remain unclear. The goal of this study was to use a novel small molecular inhibitor of TNAP, SBI-425, to interrogate the function of TNAP in neuroimmune disorders. Following intraperitoneal (IP) administration of SBI-425, mass spectrometry analysis revealed that the SBI-425 does not cross the blood-brain barrier (BBB) in healthy mice. To elucidate the role of TNAP at the brain-immune axis, mice were subjected to experimental sepsis and received either vehicle or SBI-425 (25 mg/kg, …


Cd80 Expressed By Cd8+ T Cells Contributes To Pd-L1-Induced Apoptosis Of Activated Cd8+ T Cells, Meagan R. Rollins, Rachel M. Gibbons Johnson Oct 2017

Cd80 Expressed By Cd8+ T Cells Contributes To Pd-L1-Induced Apoptosis Of Activated Cd8+ T Cells, Meagan R. Rollins, Rachel M. Gibbons Johnson

Biology Publications

Tumor cells are capable of limiting antitumor CD8+ T cell responses through their cell surface expression of PD-L1. In addition to PD-1 expressed by CD8+ T cells, PD-L1 also binds to CD80 expressed by CD8+ T cells. The influence of the PD-L1/CD80 interaction on CD8+ T cell function has not been fully characterized, so we sought to investigate the impact of the PD-L1/CD80 interaction on PD-L1-induced apoptosis of activated CD8+ T cells. We found that CD8+ T cells that lacked CD80 expression got activated to the same extent as wild-type CD8+ T cells, but when cultured with anti-CD3 and PD-L1/Fc …


Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte May 2017

Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte

University Scholar Projects

Sickle cell disease (SCD) has been shown to be associated with decreased baseline immunity and thus increased susceptibility to infection. I sought to discern possible causes of this by looking into the correlations between SCD and hematopoiesis, the immune system and the neuroendocrine system, and ultimately by conducting experiments surrounding the impaired immune system of SCD. These experiments focused on the potential causes and effects of the diminution of B-1a cells in the SCD spleen. Adoptive transfers, infections with Streptococcus pneumoniae, and histologic imaging were conducted to establish if the diminution of the B-1a cells in the SCD spleen …


Characterization Of Nuclear Factor-Kappab Binding Sites In The Freshwater Snail, Biomphalaria Glabrata, Laura E. Deneckere Jun 2016

Characterization Of Nuclear Factor-Kappab Binding Sites In The Freshwater Snail, Biomphalaria Glabrata, Laura E. Deneckere

Lawrence University Honors Projects

Biomphalaria glabrata is an intermediate snail host for the digenean trematode, Schistosoma mansoni, which causes the human disease schistosomiasis. A lot of research has focused on the snail-schistosome interaction, especially in regards to the immune response of the snail. The nuclear factor-kappaB (NF-κB) pathway, which is involved in regulating the immune response, can be triggered by the Toll-like receptor (TLR) signaling pathway. However, not much is known about the specific molecular mechanisms regulating these responses. Both NF-κB and TLR homologues have recently been reported in B. glabrata so it is of great interest to determine if BgNF-κB can regulate …


The Leishmania Years At Unl (Or, My Life As A Cell Biologist, 1966-1981), John J. Janovy Jr. Jan 2015

The Leishmania Years At Unl (Or, My Life As A Cell Biologist, 1966-1981), John J. Janovy Jr.

Harold W. Manter Laboratory of Parasitology: Faculty and Staff Publications

Slides for a talk during which Professor Janovy discussed the methods he used in researching Leishmania during the years 1966-1981. Includes lists of references.


Altered Connexin 43 Expression Underlies Age-Dependent Decrease Of Regulatory T Cell Suppressor Function In Nonobese Diabetic Mice, Michel Kuczma, Cong-Yi Wang, Leszek Ignatowicz, Robert Gourdi, Piotr Kraj Jan 2015

Altered Connexin 43 Expression Underlies Age-Dependent Decrease Of Regulatory T Cell Suppressor Function In Nonobese Diabetic Mice, Michel Kuczma, Cong-Yi Wang, Leszek Ignatowicz, Robert Gourdi, Piotr Kraj

Biological Sciences Faculty Publications

Type 1 diabetes is one of the most extensively studied autoimmune diseases, but the cellular and molecular mechanisms leading to T cell–mediated destruction of insulin-producing β cells are still not well understood. In this study, we show that regulatory T cells (Tregs) in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate Tregs in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory …


Phthalates And Phthalate Alternatives: Effects On Proliferative And Estrogenic Target Genes In Ishikawa Cells, Ranjani Sundar '15, Ping Yin, Serdar E. Bulun May 2014

Phthalates And Phthalate Alternatives: Effects On Proliferative And Estrogenic Target Genes In Ishikawa Cells, Ranjani Sundar '15, Ping Yin, Serdar E. Bulun

Student Publications & Research

Phthalates are used as plasticizers in many of the products found in medical, household, and industrial applications. Much research has not been completed on the effects of these phthalates as potential endocrine disrupting chemicals (EDCs). As these chemicals are ingested, the mechanism by which they affect the reproductive system is largely unknown. The purpose of this study was to observe how 2 phthalates, Di-n-butyl phthalate (DBP) and Diisononyl phthalate (DINP), and 2 phthalate alternatives, Dioctyl terephthalate (DOTP) and BHT (butylated hydroxytoluene)affect uterine cells in comparison to a vehicle treatment and 17β-Estradiol treatment. Changes in expression of mRNA were observed using …


The Effect Of Small Molecule 390 On Cxcr4 Receptors, Selam B. Zenebe-Gete '14, Shruti R. Topudurti '14, Shum Andrew, Richard J. Miller May 2014

The Effect Of Small Molecule 390 On Cxcr4 Receptors, Selam B. Zenebe-Gete '14, Shruti R. Topudurti '14, Shum Andrew, Richard J. Miller

Student Publications & Research

CXCR4 is the chemokine receptor which aids in chemotaxis of stem cells, such as those in the bone marrow or the brain. SDF-1 is the natural ligand for the CXCR4 receptor. Similarities between novel molecule 390 synthesized by the Miller Lab and SDF-1 make this novel small molecule a possible agonist of the CXCR4 receptor. To determine whether 390 is an agonist to the CXCR4 receptor, we transfected cells with CXCR4 and exposed them to no agonist [vehicle control], SDF-1, or varying concentrations of our agonist drug. Next, we took calcium images using the dye fura-2, which indicates changes in …


Blockade Of Mast Cell Activation Reduces Cutaneous Scar Formation, Lin Chen, Megan Schrementi, Matthew J. Ranzer, Traci A. Wilgus, Luisa A. Dipietro Jan 2014

Blockade Of Mast Cell Activation Reduces Cutaneous Scar Formation, Lin Chen, Megan Schrementi, Matthew J. Ranzer, Traci A. Wilgus, Luisa A. Dipietro

Faculty Publications & Research

Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, …


Aspects Of The Innate Immune System In The Caribbean Octocoral Swiftia Exserta, Lorenzo P. Menzel Nov 2013

Aspects Of The Innate Immune System In The Caribbean Octocoral Swiftia Exserta, Lorenzo P. Menzel

FIU Electronic Theses and Dissertations

The immune systems of cnidaria are important to study for two reasons: to gain a better understanding of the evolution of immune responses, and to provide a basis to partially redress the precipitous world-wide die-offs of reef corals, some of which have been attributed to diseases and stress. Many immune responses share ancient evolutionary origins and are common across many taxa.

Using Swiftia exserta, an azooxanthellate ahermatypic local octocoral, as a proxy model organism to study aspects of innate immunity in corals and cnidaria allows us to address both of the reasons listed above while not using endangered species. …


Evolutionary And Molecular Analysis Of Conserved Vertebrate Immunity To Fungi, Erin Carter May 2013

Evolutionary And Molecular Analysis Of Conserved Vertebrate Immunity To Fungi, Erin Carter

Honors College

The innate immune system is highly conserved amongst all multicellular organisms. Yet a constant battle exists between host cells and pathogens due to the rapid evolution of immune system components. Functional genomics and in silico methods can be employed to elucidate the evolutionary patterns of vertebrate immunity to pathogenic fungi such as Candida albicans, an opportunistic fungal pathogen that can cause lethal candidiasis in the immunocompromised. Mammals such as humans and mice possess conserved C-type lectin receptors that recognize the C. albicans cell wall. However, these receptors have not been identified in fish. Here I describe how we identified potential …


Alloreactivity-Based Medical Conditions, Stanislav Vukmanovic, Margaret G. Petroff, Anne M. Stevens, Daniel Rukavina Jan 2013

Alloreactivity-Based Medical Conditions, Stanislav Vukmanovic, Margaret G. Petroff, Anne M. Stevens, Daniel Rukavina

Pediatrics Faculty Publications

No abstract provided.


Inhibition Of Burkholderia Multivorans Adhesion To Lung Epithelial Cells By Bivalent Lactosides, Ciara Wight, Rosaria Leyden, Paul V. Murphy, Máire Callaghan, Trinidad Velasco-Torrijos, Siobhan Mcclean Aug 2012

Inhibition Of Burkholderia Multivorans Adhesion To Lung Epithelial Cells By Bivalent Lactosides, Ciara Wight, Rosaria Leyden, Paul V. Murphy, Máire Callaghan, Trinidad Velasco-Torrijos, Siobhan Mcclean

Articles

Burkholderia cepacia complex (Bcc) is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a …


Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …


Interaction Of Environmental B. Cenocepacia Strains With Cystic Fibrosis And Non-Cystic Fibrosis Bronchial Epithelial Cells In Vitro., Annamaria Bevivino, Luisa Pirone, Ruth Pilkington, Noemi Cifani, Claudia Dalmastri, Máire Callaghan, Fiorentina Ascenzioni, Siobhan Mcclean May 2012

Interaction Of Environmental B. Cenocepacia Strains With Cystic Fibrosis And Non-Cystic Fibrosis Bronchial Epithelial Cells In Vitro., Annamaria Bevivino, Luisa Pirone, Ruth Pilkington, Noemi Cifani, Claudia Dalmastri, Máire Callaghan, Fiorentina Ascenzioni, Siobhan Mcclean

Articles

Burkholderia cenocepacia is an important human pathogen in patients with cystic fibrosis (CF). Non-clinical reservoirs may play a role in the acquisition of infections, so it is important to evaluate the pathogenic potential of environmental B. cenocepacia isolates. In this study, we investigated the interactions of two environmental B. cenocepacia strains (Mex1 and MCII-168) with two bronchial epithelial cell lines,16HBE14o- and CFBE41o-, which have a non-CF and a CF phenotype, respectively.

The environmental strains showed a significantly lower level of invasion into both CF- and non-CF cells in comparison with the clinical B. cenocepacia LMG16656T strain. Exposure of polarized …


Cloning And Characterization Of The Cell Wall Acting Enzyme Cd1034 From The Pathogen Clostridium Difficile, Zachary Suter Apr 2012

Cloning And Characterization Of The Cell Wall Acting Enzyme Cd1034 From The Pathogen Clostridium Difficile, Zachary Suter

Honors Projects in Science and Technology

The manifestation of multidrug resistance in bacteria over the past several decades has resulted in one of the foremost challenges in the management of infectious diseases. The question arises, “How do we address this growing problem?” One solution to stem the growing rise in antimicrobial resistance is to investigate new targets, while another approach is to re-examine classical antibacterial targets with a fresh perspective. The aim of this paper is to begin the process of antibacterial development for the pathogen Clostridium difficile by characterizing the cell wall acting glucosaminidase CD1034. It is inunderstanding how CD1034 functions biochemically that it can …