Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Regulation

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Molecular Biology

The Identification Of Two M20b Family Peptidases Required For Full Virulence In Staphylococcus Aureus, Nathanial James Torres, Devon Rizzo, Maria A. Reinberg, Mary-Elizabeth Jobson, Brendan C. Totzke, Jessica K. Jackson, Wenqi Yu, Lindsey Neil Shaw Jan 2023

The Identification Of Two M20b Family Peptidases Required For Full Virulence In Staphylococcus Aureus, Nathanial James Torres, Devon Rizzo, Maria A. Reinberg, Mary-Elizabeth Jobson, Brendan C. Totzke, Jessica K. Jackson, Wenqi Yu, Lindsey Neil Shaw

Molecular Biosciences Faculty Publications

We have previously demonstrated that deletion of an intracellular leucine aminopeptidase results in attenuated virulence of S. aureus. Herein we explore the role of 10 other aminopeptidases in S. aureus pathogenesis. Using a human blood survival assay we identified mutations in two enzymes from the M20B family (PepT1 and PepT2) as having markedly decreased survival compared to the parent. We further reveal that pepT1, pepT2 and pepT1/2 mutant strains are impaired in their ability to resist phagocytosis by, and engender survival within, human macrophages. Using a co-infection model of murine sepsis, we demonstrate impairment of dissemination and survival …


The F-Box Protein Fbw7 Negatively Regulates The Stability Of Erk3 Protein, Nicole Walters Jan 2021

The F-Box Protein Fbw7 Negatively Regulates The Stability Of Erk3 Protein, Nicole Walters

Browse all Theses and Dissertations

Extracellular signal-regulated kinase 3 (ERK3) is a member of the atypical mitogen-activated protein kinase (MAPK) subfamily, whose members have been shown to play important roles in a number of cellular processes including proliferation, differentiation, migration, and apoptosis. While signals regulating ERK3 kinase activity remain unclear, ERK3 is known to be an unstable protein with function tightly regulated via ubiquitination and proteasomal turnover. The deubiquitinating enzyme USP20 has been shown to regulate ERK3 by stabilizing the kinase, but presently, no destabilizing ubiquitin ligases have been identified. The SKP1-CUL1-F-box protein (SCF) E3 ligases are a subfamily of ubiquitin E3 ligases composed of …


An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte Apr 2020

An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte

Honors Scholar Theses

The CRISPR-Cas system is a promising form of gene editing, especially for the agriculture industry. The ability to make single-nucleotide edits within a gene of interest, without the need to introduce foreign DNA, is a powerful tool for designing healthier and more efficient crops and food animals. This system provides opportunity for increased nutritional value, decreased food waste, and more economically and environmentally sustainable food production. Though this biotechnology is facing mechanistic limitations due to off-target effects and inefficient homology-directed repair, vast improvements have already been made to improve its efficacy. The CRISPR-Cas system is already the most advanced form …


Dynamic Regulation Of G-Protein Signaling, William C. Simke Aug 2019

Dynamic Regulation Of G-Protein Signaling, William C. Simke

Electronic Theses and Dissertations

G protein-coupled receptors (GPCRs) are involved in numerous signaling processes ranging from neuronal growth to immune cells tracking invaders. GPCR signaling plays a role in many human diseases and thus GPCRs are important drug targets. Yeast respond to mating pheromone using a GPCR signaling system homologous to those used in humans to polarize their cytoskeleton toward the pheromone source. This is accomplished by initializing a MAPK signaling cascade to arrest the cells in mitosis and upregulate expression of chemotropic proteins. Pathway desensitization is accomplished by the Regulator of G-protein Signaling (RGS). RGS abrogates signaling by binding to the active GPCR, …


Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer May 2019

Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer

Dissertations & Theses (Open Access)

In eukaryotic cells, protein homeostasis and cellular fitness is promoted by the transcription factor heat shock factor 1 (HSF1) during exposure to proteotoxic stress. HSF1 controls the basal and stress-induced expression of molecular chaperones and other protective targets. Dynamic regulation of HSF1 involves the major heat shock proteins Hsp70 and Hsp90. Recent advances in the understanding of this regulatory circuit in Saccharomyces cerevisiae have shown that the Hsp70 Ssa1 acts as a sensor for some proteotoxic stresses and is capable of a direct interaction with Hsf1. This work continues to explore the complex regulatory interaction between Hsf1 and Ssa1. I …


The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn Aug 2018

The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn

Electronic Theses and Dissertations

Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel substrates and catalytic activities. Even within families and between homologs, it is becoming clear the intricacies of methyltransferase specificity and regulation are far more diverse than originally thought. In addition to specific substrates and distinct methylation levels, methyltransferase activity can be altered through formation of complexes with close homologs. This work involves the N-terminal methyltransferase homologs NRMT1 and NRMT2. NRMT1 is a ubiquitously expressed distributive trimethylase. NRMT2 is a monomethylase expressed at low levels and in a tissue-specific manner. They are both nuclear methyltransferases with overlapping target consensus sequences …


Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai May 2017

Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce diverse extracellular signals like hormones, neurotransmitters, and photons to specific cellular responses through heterotrimeric G proteins. G proteins activate numerous effectors and signal transduction pathways, and therefore the regulation of G proteins is crucial for faithful propagation of specific cellular and physiological responses. A better understanding of the mechanisms that regulate G proteins should provide new insight into signaling pathways that govern healthy and disease states, and also provide opportunities for discovery of novel therapeutic targets.Regulator of G protein signaling (RGS) proteins are crucial regulators of G proteins, for they control amplitude and duration of …


Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke Mar 2014

Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke

USF Tampa Graduate Theses and Dissertations

Toxoplasma gondii is an obligate intracellular protozoan parasite of animals and man. The asexual life cycle of Toxoplasma involves three very distinct, but tightly coordinated developmental stages. In nature, the sporozoite (contained within an oocyst) and bradyzoite (contained within a tissue cyst) initiate infection of the intermediate host, followed by rapid differentiation into the actively replicating tachyzoite. When countered by an effective host response, the tachyzoite differentiates back into the latent bradyzoite and this unique ability of Toxoplasma to interconvert between the replicating tachyzoite and the latent bradyzoite within a single host is the cause of life long infection. The …


Ecdysis Triggering Hormone And Its Role In Juvenile Hormone Synthesis In The Yellow-Fever Mosquito, Aedes Aegypti, Maria Areiza Jan 2014

Ecdysis Triggering Hormone And Its Role In Juvenile Hormone Synthesis In The Yellow-Fever Mosquito, Aedes Aegypti, Maria Areiza

FIU Electronic Theses and Dissertations

Ecdysis triggering hormone (ETH) is a neuropeptide known for its role in the orchestration of ecdysis. However, its role in the regulation of Juvenile Hormone (JH) synthesis is unknown. In Aedes aegypti, JH is synthesized by the corpora allata (CA) and titers are tightly regulated by allatoregulatory factors. In this study I describe the effect of ETH on JH synthesis during the late pupal stage and in the adult female after blood feeding. Analysis of ETH receptor (ETHRs) expression showed that ETHRs are present in both the CA and the corpora cardiaca (CC), a neurohemal organ. The data suggest …


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

Dissertations & Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates …


Regulation Of The Bacterial Transposon Tn5, Crystal R. Mclellan Feb 2012

Regulation Of The Bacterial Transposon Tn5, Crystal R. Mclellan

Electronic Thesis and Dissertation Repository

Transposons play an integral role in bacterial adaptation, therefore it is important to understand the chemical steps and regulatory factors that govern their mobility. The properties that drive insertion of transposons into subsequent DNA sites have been studied for few elements. The transposon Tn5 in particular has few defined insertion sites and little is known about how its targets are selected. An objective of this thesis was to determine the molecular details of target insertion in Tn5 transposition in vitro. To this end, I assessed whether Tn5 could preferentially insert into short oligonucleotide substrates. I detected a Tn5 transpososome …


Converting A Protein Into A Switch For Biosensing And Functional Regulation, Margaret M. Stratton, S N. Loh Jan 2011

Converting A Protein Into A Switch For Biosensing And Functional Regulation, Margaret M. Stratton, S N. Loh

Biochemistry & Molecular Biology Department Faculty Publication Series

Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent-free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co-opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are …


The Role Of Ledgf/P75 In Transcriptional Regulation, Jeffrey Ryan Kugelman Jan 2010

The Role Of Ledgf/P75 In Transcriptional Regulation, Jeffrey Ryan Kugelman

Open Access Theses & Dissertations

The Lens Epithelial Derived Growth Factor p75 (LEDGF/p75) is a chromatin bound protein whose cellular function is not yet clearly known. A role in transcriptional regulation had been previously proposed based on its interaction with the basal transcriptional machinery and on its effects on the expression of genes involved in the cellular response to environmental stresses. To further elucidate the function of LEDGF/p75, we conducted a global and unbiased evaluation of the role of this protein in gene expression. To that aim, we performed a microarray analysis of cellular gene expression in cells that are severely depleted of LEDGF/p75. To …


Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, X Li, J Yuan, K B. Kim, Seung J. Baek Apr 2008

Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, X Li, J Yuan, K B. Kim, Seung J. Baek

Faculty Publications and Other Works -- Biochemistry, Cellular and Molecular Biology

The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear transcription factor that controls the genes involved in metabolism and carcinogenesis. In the present study, we examined the alteration of gene expression in HCT-116 human colorectal cancer cells by PPARgamma agonists: MCC-555 (5 microM), rosiglitazone (5 microM), and 15-deoxy-Delta12,14-prostaglandin J2 (1 microM). The long-oligo microarray data revealed a list of target genes commonly induced (307 genes) and repressed (32 genes) by tested PPARgamma agonists. These genes were analyzed by Onto-Express software and KEGG pathway analysis and revealed that PPARgamma agonists are involved in cell proliferation, focal adhesion, and several signaling pathways. …


Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, J Yuan, X Li, K B. Kim, Seung J. Baek Apr 2008

Gene Alterations By Peroxisome Proliferator-Activated Receptor Gamma Agonists In Human Colorectal Cancer Cells, Maria Cekanova, J Yuan, X Li, K B. Kim, Seung J. Baek

Maria Cekanova MS, RNDr, PhD

The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear transcription factor that controls the genes involved in metabolism and carcinogenesis. In the present study, we examined the alteration of gene expression in HCT-116 human colorectal cancer cells by PPARgamma agonists: MCC-555 (5 microM), rosiglitazone (5 microM), and 15-deoxy-Delta12,14-prostaglandin J2 (1 microM). The long-oligo microarray data revealed a list of target genes commonly induced (307 genes) and repressed (32 genes) by tested PPARgamma agonists. These genes were analyzed by Onto-Express software and KEGG pathway analysis and revealed that PPARgamma agonists are involved in cell proliferation, focal adhesion, and several signaling pathways. …