Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Peptides

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 13 of 13

Full-Text Articles in Molecular Biology

Development Of A Diaryl Oxazole-Based Cleavable Linker For Peptides, Evan Wolff Jan 2024

Development Of A Diaryl Oxazole-Based Cleavable Linker For Peptides, Evan Wolff

Honors Theses

The development of new cleavable linkers increases the diversity of compatible conditions for peptide discovery platforms. Potential applications for these linkers include high-throughput pharmaceutical candidate screening when utilized in Peptide Encoded Libraries (PELs). This thesis describes the development of a bifunctional diaryl oxazole-based cleavable linker that may be incorporated into compounds through Solid-Phase Peptide Synthesis (SPPS). This oxazole-based linker may be rapidly cleaved by cerium ammonium nitrate in aqueous conditions and is compatible with most natural amino acids and a variety of unnatural amino acids. This linker represents the first single-electron oxidant labile linker described to our knowledge and it …


Heterocycles As Peptide-Based Cleavable Linkers, John Blobe Jan 2024

Heterocycles As Peptide-Based Cleavable Linkers, John Blobe

Honors Theses

As cancer cases continue to rise, the need for advancing the treatment options for cancer is ever increasing. Current cancer therapeutics, while effective at treating localized cancers and a fraction of advanced cancers, generally lack the specificity needed to target more advanced cancers. Recent advancements in cancer treatments have leveraged antibodies to target certain cancers. A class of drugs that utilize antibodies to deliver anti-cancer therapy preferentially to cancer cells, termed antibody-drug conjugates (ADCs), have been quite effective in treating certain advanced forms of certain cancers. These ADCs could be more effective if they could allow for the facile release …


Identification Of The Functional Domain Of The Dense Core Vesicle Biogenesis Factor Hid-1, Blake H. Hummer, Theodore Carter, Breanna L. Sellers, Jenna D. Triplett, Cedric S. Asensio Sep 2023

Identification Of The Functional Domain Of The Dense Core Vesicle Biogenesis Factor Hid-1, Blake H. Hummer, Theodore Carter, Breanna L. Sellers, Jenna D. Triplett, Cedric S. Asensio

Biological Sciences: Faculty Scholarship

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, …


Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Probing Interactions Between Canonical Nox Domains, Akua Acheampong May 2021

Probing Interactions Between Canonical Nox Domains, Akua Acheampong

Master of Science in Integrative Biology Theses

NAPDH oxidase enzymes (NOXes) reduce molecular oxygen to superoxide and other ROS. NOXes contain a catalytic core comprising a heme-containing transmembrane (TM) domain and a cytoplasmic dehydrogenase (DH) domain that binds the substrate NADPH and the cofactor. Previously, NOXes were only characterized in eukaryotes, but have recently been identified in prokaryotes, namely bacteria. Due to their constitutive activity and solubility in detergent, bacterial NOXes, such as Streptococcus Pneumoniae NOX, have emerged as a model for studying NOXes. Past research studies in NOXes have identified conserved, putative interacting regions at the interface of the TM and DH domains: the TM B-loop, …


Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler Jan 2016

Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler

Celia A. Schiffer

The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to …


Beta-Sheet Forming Peptides By Design : Control Of Folding And Applications, Gaius Takor Jan 2016

Beta-Sheet Forming Peptides By Design : Control Of Folding And Applications, Gaius Takor

Legacy Theses & Dissertations (2009 - 2024)

The focus of the present research is the synthesis of polypeptides for the study of protein folding and misfolding and for the development of novel polypeptide-based optical antennas in nanotechnology. It is hypothesized that simple polypeptides can be used as models to mimic in vivo folding of globular proteins. Desired repetitive polypeptides were genetically encoded and expressed in E. coli using conventional methods and characterized using a variety of spectroscopic (including circular dichroism (CD), deep UV resonance Raman (DUVRR), UV-vis and fluorescence) and microscopic (atomic force microscopy (AFM) and transmission electron microscopy (TEM)) techniques. The polypeptides predominantly formed bilayer, fibrillar …


Generation And Characterization Of Peptide Fusion Proteins, Brianna L. Probasco Jan 2013

Generation And Characterization Of Peptide Fusion Proteins, Brianna L. Probasco

Graduate School of Biomedical Sciences Theses and Dissertations

Pathogenic Th17 cells drive progression of many autoimmune diseases. Th17 cells develop from naïve T cells in the immune system after antigen-driven stimulation in a specific cytokine environment. Normally, T cells act to fight off infection, but when not properly controlled, they can cause disease. The cytokine interleukin-23 (IL-23) plays an essential role in the expansion of pathogenic Th17 cells. IL-23 is a heterodimeric protein, composed of a p19 alpha chain and a p40 beta chain. The p40 is also part of IL-12 and binds to the IL-12 receptor beta 1 (IL-12Rβ1) subunit. Thus, it follows that the IL-23 receptor …


Achieving High Accuracy Prediction Of Minimotifs, Tian Mi, Sanguthevar Rajasekaran, Jerlin Camilus Merlin, Michael R. Gryk, Martin Schiller Sep 2012

Achieving High Accuracy Prediction Of Minimotifs, Tian Mi, Sanguthevar Rajasekaran, Jerlin Camilus Merlin, Michael R. Gryk, Martin Schiller

Life Sciences Faculty Research

The low complexity of minimotif patterns results in a high false-positive prediction rate, hampering protein function prediction. A multi-filter algorithm, trained and tested on a linear regression model, support vector machine model, and neural network model, using a large dataset of verified minimotifs, vastly improves minimotif prediction accuracy while generating few false positives. An optimal threshold for the best accuracy reaches an overall accuracy above 90%, while a stringent threshold for the best specificity generates less than 1% false positives or even no false positives and still produces more than 90% true positives for the linear regression and neural network …


Auf1/Hnrnp D Represses Expression Of Vegf In Macrophages, Abigail Fellows, Mary E. Griffin, Brenda L. Petrella, Lihui Zhong, Fatemeh P. Parvin-Nejad, Roy Fava, Peter Morganelli, R. Brooks Robey, Ralph C. Nichols Feb 2012

Auf1/Hnrnp D Represses Expression Of Vegf In Macrophages, Abigail Fellows, Mary E. Griffin, Brenda L. Petrella, Lihui Zhong, Fatemeh P. Parvin-Nejad, Roy Fava, Peter Morganelli, R. Brooks Robey, Ralph C. Nichols

Dartmouth Scholarship

Vascular endothelial growth factor (VEGF) is a regulator of vascularization in development and is a key growth factor in tissue repair. In disease, VEGF contributes to vascularization of solid tumors and arthritic joints. This study examines the role of the mRNA-binding protein AUF1/heterogeneous nuclear ribonucleoprotein D (AUF1) in VEGF gene expression. We show that overexpression of AUF1 in mouse macrophage-like RAW-264.7 cells suppresses endogenous VEGF protein levels. To study 3′ untranslated region (UTR)–mediated regulation, we introduced the 3′ UTR of VEGF mRNA into a luciferase reporter gene. Coexpression of AUF1 represses VEGF-3′ UTR reporter expression in RAW-264.7 cells and in …


Evolutionary Relationships Among Staphylococci And The Prevention Of Staphylococcus Aureus Nasal Colonization, Ryan Paul Lamers Jan 2011

Evolutionary Relationships Among Staphylococci And The Prevention Of Staphylococcus Aureus Nasal Colonization, Ryan Paul Lamers

Electronic Theses and Dissertations

Staphylococcus is a significant cause of human infection and mortality, worldwide. Currently, there are greater than 60 taxa within Staphylococcus, and nearly all are pathogenic. The collective potential for virulence among species of Staphylococcus heightens the overall clinical significance of this genus and argues for a thorough understanding of the evolutionary relationships among species. Within Staphylococcus, aureus is the most common cause of human infection, where nasal carriage of this bacterium is a known risk factor for autoinfection. The predisposition to infection by nasal carriers of S. aureus, and the ease with which strains are transferred between individuals, suggests that …


Characterization And Functional Regulation Of Bioactive Peptides In Avian Macrophages And Heterophils, Lakshmi Kannan Dec 2009

Characterization And Functional Regulation Of Bioactive Peptides In Avian Macrophages And Heterophils, Lakshmi Kannan

Graduate Theses and Dissertations

Oligopeptides and low molecular weight polypeptides play central roles as effectors and signal transducers acting as hormones, neurotransmitters, growth factors, toxins, and antimicrobial factors that are important for the survival of the organism. Owing to the ubiquitous involvement of peptides in many key regulatory processes, we have been interested to identify native peptides in different cells and tissues and understand their functions. To conduct our studies, we used avian macrophages and heterophils as models of specialized cells which constitute central components of innate immunity. These studies involved (a) qualitative identification and characterization of the peptides associated with high intensity mass …


Mechanism Of High-Mobility Group Protein B Enhancement Of Progesterone Receptor Sequence-Specific Dna Binding, James S. Adelman, Sarah C. Roemer, Mair E.A. Churchill, Dean P. Edwards Jan 2008

Mechanism Of High-Mobility Group Protein B Enhancement Of Progesterone Receptor Sequence-Specific Dna Binding, James S. Adelman, Sarah C. Roemer, Mair E.A. Churchill, Dean P. Edwards

James S. Adelman

The DNA-binding domain (DBD) of progesterone receptor (PR) is bipartite containing a zinc module core that interacts with progesterone response elements (PRE), and a short flexible carboxyl terminal extension (CTE) that interacts with the minor groove flanking the PRE. The chromosomal high-mobility group B proteins (HMGB), defined as DNA architectural proteins capable of bending DNA, also function as auxiliary factors that increase the DNA-binding affinity of PR and other steroid receptors by mechanisms that are not well defined. Here we show that the CTE of PR contains a specific binding site for HMGB that is required for stimulation of PR-PRE …