Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Iron

Theses/Dissertations

USF Tampa Graduate Theses and Dissertations

Articles 1 - 1 of 1

Full-Text Articles in Molecular Biology

Cellular And Molecular Alterations Associated With Ovarian And Renal Cancer Pathophysiology, Ravneet Kaur Chhabra Sep 2021

Cellular And Molecular Alterations Associated With Ovarian And Renal Cancer Pathophysiology, Ravneet Kaur Chhabra

USF Tampa Graduate Theses and Dissertations

Elucidating molecular alterations underlying tumor development and chemoresistance are critical to expand our understanding of the disease pathophysiology. This dissertation is focused on analyzing the cellular and molecular alterations associated with LPA-induced chemoresistance in clear cell renal cell carcinoma (ccRCC) cells and chronic iron-induced deregulation of miRNA expression in fallopian tube secretory epithelial cells (FTSECs).

Kidney cancer is one of the ten most common cancers worldwide with <15% survival rate at advanced stage (American Cancer Society). ccRCC is the most common type of kidney cancer and is described as a metabolic disease characterized by deregulated lipid metabolism leading to increased intracellular lipid droplets [9, 10]. The current molecular-targeted treatment strategies involve VEGF/VEGFR and mTOR inhibition [9, 12]. However, there are limitations to these approaches leading to the reduced efficacy and/or increased resistance in ccRCC cells [13, 14]. Therefore, it is important to decipher the factors involved in compromising the chemosensitivity in these cells.

Lysophosphatidic acid (LPA), a bioactive phospholipid, was previously reported to increase resistance against Sunitinib (VEGFR/PDGFR inhibitor) in ccRCC cells and to increase migration and invasion in various tumors [15-17]. In Chapter 3 of …