Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Gene regulation

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 18 of 18

Full-Text Articles in Molecular Biology

Extraction Of Transcriptional Regulators For The Polyhydroxyalkanoate Depolymerase Gene From Streptomyces Nymphaeiformis, Kara B. Eppard, Stephen F. Baron Dec 2023

Extraction Of Transcriptional Regulators For The Polyhydroxyalkanoate Depolymerase Gene From Streptomyces Nymphaeiformis, Kara B. Eppard, Stephen F. Baron

Honors Projects

Plastic waste has become an increasingly prevalent environmental pollutant. This problem is exacerbated by the inability of plastic to degrade under most natural conditions. In contrast, polyhydroxyalkanoates (PHAs) are biologically produced, plastic-like polymers that can be broken down and metabolized by bacteria. The bacterium Streptomyces nymphaeiformis can degrade the PHA, polyhydroxybutrate (PHB), using an extracellular PHB depolymerase, which is encoded by the phaZ gene. PHB depolymerase is synthesized only in the presence of PHB or its monomer, but not glucose, suggesting that transcription of phaZ is regulated, presumably by transcriptional regulatory proteins that bind to its promoter region. The DNA …


Molecular Regulation Of The Salicylic Acid Hormone Pathway In Plants Under Changing Environmental Conditions, Christina A. M. Rossi, Eric J. R. Marchetta, Jong Hum Kim, Christian Castroverde Jan 2023

Molecular Regulation Of The Salicylic Acid Hormone Pathway In Plants Under Changing Environmental Conditions, Christina A. M. Rossi, Eric J. R. Marchetta, Jong Hum Kim, Christian Castroverde

Biology Faculty Publications

Salicylic acid (SA) is a central plant hormone mediating immunity, growth, and development. Recently, studies have highlighted the sensitivity of the SA pathway to changing climatic factors and the plant microbiome. Here we summarize organizing principles and themes in the regulation of SA biosynthesis, signaling, and metabolism by changing abiotic/biotic environments, focusing on molecular nodes governing SA pathway vulnerability or resilience. We especially highlight advances in the thermosensitive mechanisms underpinning SA-mediated immunity, including differential regulation of key transcription factors (e.g., CAMTAs, CBP60g, SARD1, bHLH059), selective protein–protein interactions of the SA receptor NPR1, and dynamic phase separation of the recently identified …


Tetr Family Regulator Farr Variation Controls Antimicrobial Fatty Acid Efflux In Staphylococcus Aureus, Camryn M. Bonn Jul 2022

Tetr Family Regulator Farr Variation Controls Antimicrobial Fatty Acid Efflux In Staphylococcus Aureus, Camryn M. Bonn

Electronic Thesis and Dissertation Repository

To colonize human skin and survive within abscesses, Staphylococcus aureus has evolved mechanisms to evade host innate defenses. USA300 has become the predominate community-acquired methicillin-resistant S. aureus (CA-MRSA) clone, which can be in part attributed to detoxification of unsaturated free fatty acids (uFFA) found in sebum and the nares. Our lab has previously identified the TetR family regulator FarR responsible for induction of the resistance-nodulation-division (RND) superfamily efflux pump FarE to promote efflux of toxic uFFA. However, RND family efflux pumps remain poorly characterized in Gram-positive species and the mechanism by which FarR regulates FarE has yet to be determined. …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …


The Role Of Ccaat Binding Factor In The Regulation Of Catalase Gene Expression In Candida Albicans, Zahra Al-Rumaih May 2022

The Role Of Ccaat Binding Factor In The Regulation Of Catalase Gene Expression In Candida Albicans, Zahra Al-Rumaih

Graduate Theses and Dissertations

Candida albicans is a fungal opportunistic human pathogen. Its infections range from surficial infections like skin rash to fatal systemic infections. Filamentation growth mode is associated with C. albicans virulence because it helps penetration of the host’s epithelial cells. The CCAAT-binding factor (CBF) is a conserved heterooligomeric transcription factor found in 30% of eukaryotes genes. In C. albicans it is composed of 4 major subunits, including Hap2, Hap3, Hap4, and Hap5. Hap2 and Hap5 are essential for DNA binding and function. Hap4 has 3 homologous subunits: Hap41 and Hap42 are putative subunits of CBP. Hap43 is the only Hap4 subunit …


Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba Jun 2020

Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation—initiation, elongation, and termination—cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels …


Thyroxine-Dependent And -Independent Effects On Premature Aging And Myelination In Atrx Mutant Mice, Megan E. Rowland Feb 2020

Thyroxine-Dependent And -Independent Effects On Premature Aging And Myelination In Atrx Mutant Mice, Megan E. Rowland

Electronic Thesis and Dissertation Repository

ATRX is an ATP-dependent chromatin remodeler required to safeguard genomic integrity. Conditional deletion of Atrx in the mouse embryonic forebrain and anterior pituitary in AtrxFoxg1Cre mice phenocopies mouse models of progeria which display increased DNA damage, coupled with reduced lifespan, growth and subcutaneous fat. These mice also have severely low circulating levels of insulin like growth factor 1 (IGF-1) and (T4) which have been reported in models of premature aging. Based on evidence that Igf1 is activated by the ligand-bound thyroid hormone receptor, I tested whether T4 supplementation could restore IGF-1 levels and ameliorate premature aging phenotypes in Atrx …


The Role Of Secreted Proteases In Regulating Disease Progression In Staphylococcus Aureus, Brittney D. Gimza Nov 2019

The Role Of Secreted Proteases In Regulating Disease Progression In Staphylococcus Aureus, Brittney D. Gimza

USF Tampa Graduate Theses and Dissertations

Staphylococcus aureus is a highly successful pathogen capable of producing a wealth of virulence factors in the human host. Of note, ten extracellular proteases are produced alongside these virulence factors and play a multifaceted role during infection. They not only cleave host proteins to promote bacterial invasion, immune evasion and survival, but also control disease progression by modulating the stability of self-derived pathogenic determinants. The importance of the secreted proteases modulating virulence factor stability is evidenced by our groups previous finding that a protease-null strain has a substantially increased infectious capacity in a murine model of sepsis; resulting from the …


Gq Noncanonical Roles In Translational Regulation, Brett Demarco Aug 2018

Gq Noncanonical Roles In Translational Regulation, Brett Demarco

Electronic Theses and Dissertations

This study investigates protein nucleic acid interactions, focusing on G-quadruplex (GQ) forming DNA/RNA in human disease. GQ structures are formed in DNA/RNA, when four guanine residues form planar tetrads stabilized by Hoogsteen base pairing, that stack forming a GQ structure stabilized by potassium ions. These GQ structures are targeted by the arginine glycine-glycine (RGG) RNA-binding domain. Fragile X mental retardation protein (FMRP), a translation regulator protein implicated in the fragile X syndrome, has an RGG domain and has been previously shown to interact with neuronal GQ forming messenger RNA (mRNA). We have investigated three neuronal FMRP mRNA targets that we …


Investigation Of Bradyzoite Differentiation Initiation In Toxoplasma Gondii, Harim I. Won, Paul H. Davis Ph.D. May 2018

Investigation Of Bradyzoite Differentiation Initiation In Toxoplasma Gondii, Harim I. Won, Paul H. Davis Ph.D.

Theses/Capstones/Creative Projects

Like other eukaryotic organisms, Toxoplasma gondii promoters feature both constitutive and life-stage regulated cis-elements. Using a transcriptomic microarray approach, a cluster of transcripts upregulated early during bradyzoite differentiation was identified. Computational analysis of the promoter regions of these “up-early” transcripts identified a shared upstream consensus motif, a putative transcription factor binding site. Using a dual luciferase assay adapted for recombinational cloning and reporter gene quantification by qPCR, we demonstrate developmental stage-specific expression of the luciferase reporter gene inserted downstream of the transcription factor binding site. The shared consensus motif was found to be an autonomous cis-element by conversion …


Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor May 2018

Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor

Dissertations & Theses (Open Access)

Bacillus anthracis produces three regulators, AtxA, AcpA, and AcpB, that control virulence gene expression and are members of an emerging class of regulators termed “PCVRs” (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA controls expression of the toxin genes; lef, cya, and pag, and is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA activity result in capBCADE transcription in strains lacking acpA and acpB. RNA-Seq was used to assess the regulons of the …


Gmmyb176 Interactome And Regulation Of Isoflavonoid Biosynthesis In Soybean, Arun Kumaran Anguraj Vadivel Jun 2017

Gmmyb176 Interactome And Regulation Of Isoflavonoid Biosynthesis In Soybean, Arun Kumaran Anguraj Vadivel

Electronic Thesis and Dissertation Repository

MYB transcription factors are one of the largest transcription factor families characterized in plants. They are classified into four types: R1 MYB, R2R3 MYB, R3 MYB and R4 MYB. GmMYB176 is an R1MYB transcription factor that regulates Chalcone synthase (CHS8) gene expression and isoflavonoid biosynthesis in soybean. Silencing of GmMYB176 suppressed the expression of the GmCHS8 gene and reduced the accumulation of isoflavonoids in soybean hairy roots. However, overexpression of GmMYB176 does not alter either GmCHS8 gene expression or isoflavonoid levels suggesting that GmMYB176 alone is not sufficient for GmCHS8 gene regulation. I hypothesized that GmMYB176 acts cooperatively with another …


A Family Of Genus-Specific Rnas In Tandem With Dna-Binding Proteins Control Expression Of The Bada Major Virulence Factor Gene In Bartonella Henselae, Nhan Tu, Ronan K. Carroll, Andy Weiss, Lindsey N. Shaw, Gael Nicolas, Sarah Thomas, Amorce Lima, Udoka Okaro, Burt Anderson Jan 2017

A Family Of Genus-Specific Rnas In Tandem With Dna-Binding Proteins Control Expression Of The Bada Major Virulence Factor Gene In Bartonella Henselae, Nhan Tu, Ronan K. Carroll, Andy Weiss, Lindsey N. Shaw, Gael Nicolas, Sarah Thomas, Amorce Lima, Udoka Okaro, Burt Anderson

Molecular Biosciences Faculty Publications

Bartonella henselae is a gram-negative zoonotic bacterium that causes infections in humans including endocarditis and bacillary angiomatosis. B. henselae has been shown to grow as large aggregates and form biofilms in vitro. The aggregative growth and the angiogenic host response requires the trimeric autotransporter adhesin BadA. We examined the transcriptome of the Houston-1 strain of B. henselae using RNA-seq revealing nine novel, highly-expressed intergenic transcripts (Bartonella regulatory transcript, Brt1-9). The Brt family of RNAs is unique to the genus Bartonella and ranges from 194 to 203 nucleotides with high homology and stable predicted secondary structures. Immediately downstream of each …


Uncovering The Molecular Link Between Mir156.Spl15 And Carotenoid Accumulation In Arabidopsis, Davood Emami Meybodi Oct 2013

Uncovering The Molecular Link Between Mir156.Spl15 And Carotenoid Accumulation In Arabidopsis, Davood Emami Meybodi

Electronic Thesis and Dissertation Repository

Carotenoid Cleavage Dioxygenases (CCDs) are an enzyme family that cleaves specific double bonds in carotenoids. MicroR156 in Arabidopsis regulates a network of genes by repressing 10 SPL genes, among which, SPL15 was found to regulate shoot branching and carotenoid accumulation. The expression of CCD1, CCD4, CCD7, CCD8, NCED2, NCED3, NCED5, NCED6, NCED9 and SPL15 was evaluated in siliques at 10 days post anthesis and in 10-day-old roots in Arabidopsis wild type, sk156 (miR156 overexpression mutant), RS105 (miR156 overexpression line), spl15 (SPL15 knockout mutant) and two 35S:SPL15 lines. Results showed that most of CCD/NCED genes were …


Investigation Of Bacterial Rna-Directed Dna Methylation Via Dcm And Hfq, Dandan Li Jan 2013

Investigation Of Bacterial Rna-Directed Dna Methylation Via Dcm And Hfq, Dandan Li

Wayne State University Theses

Bacterial small RNAs and the RNA chaperone Hfq play crucial roles in post-transcriptional gene regulation, often as parts of stress-response pathways, but little is known about their roles in regulation of gene transcription. A recent report showed that changes in methylation patterns caused by DNA cytosine methyltransferase (Dcm) were linked to gene regulation occurring during the transition to stationary phase. Here, we show that Dcm involves in the stress responses under nutrient starvation and cold stress. Dcm and Hfq together mediate gene expression under cold stress. Hfq promotes Dcm-catalyzed cytosine methylation at specific sites near the rpoS promoter, which is …


The Role Of Cyp33 In Mll Mediated Gene Repression, Steven D. Poppen Jan 2012

The Role Of Cyp33 In Mll Mediated Gene Repression, Steven D. Poppen

Dissertations

Mixed Lineage Leukemia (MLL) is a multidomain protein whose gene is translocated in a subset of AML leukemias. Translocation of the MLL gene is present in approximately five percent of adult acute leukemias and ten percent of pediatric leukemias (Daser, A 2004, Look, A 1997, Huret, J 2001) Patients presenting in the clinic at the time of diagnosis with an MLL fusion have been shown to respond poorly to treatment and have a worse prognosis than matched wild type MLL patients (Rubnitz, J 1994, Rubnitz, J 1999). Novel therapies therefore are needed in order to more effectively treat patients with …


Mechanistic Studies Of A Novel Ppar-Gamma Mutant That Causes Lipodystrophy And Diabetes, Olga Astapova Jan 2012

Mechanistic Studies Of A Novel Ppar-Gamma Mutant That Causes Lipodystrophy And Diabetes, Olga Astapova

Wayne State University Dissertations

PPAR-gamma is a nuclear receptor that plays a central role in metabolic regulation by regulating extensive gene expression networks in adipose, liver, skeletal muscle and many other tissues. Human PPAR-gamma mutations are rare and cause a monogenetic form of severe type II diabetes with metabolic syndrome, known as familiar partial lypodystrophy. The E157D PPAR-gamma mutant causes atypical lipodystrophy in a large Canadian kindred, presenting with multiple musculoskeletal, neurological and hematological abnormalities in addition to the classic lipodystrophy features of insulin-resistant diabetes, hypertension and dyslipidemia. This mutation is localized to the p-box of PPAR-gamma, a small region that interacts directly with …


The Cell Cycle–Regulated Genes Of Schizosaccharomyces Pombe, Anna Oliva, Adan Rosebrock, Francisco Ferrezuelo, Haiying Chen, Saumyadipta Pyne, Steve Skiena, Bruce Futcher, Janet Leatherwood Jun 2005

The Cell Cycle–Regulated Genes Of Schizosaccharomyces Pombe, Anna Oliva, Adan Rosebrock, Francisco Ferrezuelo, Haiying Chen, Saumyadipta Pyne, Steve Skiena, Bruce Futcher, Janet Leatherwood

Department of Molecular Genetics and Microbiology Faculty Publications

Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 …