Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

The Gene Expression Patterns Of Phanerochaete Chrysosporium And Trametes Versicolor On Diverse Lignocellulosic Feedstocks, Noor Osama Alabbasi Jan 2021

The Gene Expression Patterns Of Phanerochaete Chrysosporium And Trametes Versicolor On Diverse Lignocellulosic Feedstocks, Noor Osama Alabbasi

Masters Theses

Plant biomass is considered to be an important future starting material for fuels and chemicals, thereby decreasing our reliance on fossil fuels. While direct combustion continues to be a source of fuel, the generation of liquid fuels from plant biomass for transportation has proven to be challenging. Among the limiting factors for conversion of this material to biofuels is the recalcitrant nature of lignocellulose, the primary component of non-starch plant biomass. A strategy to overcome this dilemma is to directly or indirectly use the enzymes from white-rot fungi, which have evolved a unique ability to deconstruct lignocellulose. However, the biochemical …


Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright Jul 2020

Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright

Biology ETDs

Microalgae are of interest for the creation of sustainable and cost competitive alternatives to petroleum-based fuels and chemicals. However, cultivation, extraction and processing of algal biomass requires improved yields to achieve economic feasibility. The advancement of microalgal biotechnology and various genetic engineering techniques allow the improvement of microalgae biomass for this purpose. Here, the characterization of the overexpression of the native vacuolar H+ pumping pyrophosphate (AVP1) in Picochlorum soloecismus was examined. AVP1 overexpression causes biomass increase in relevant plant crops. When overexpressed in this microalga it increases carbon storage in the form of starch in a closed laboratory photobioreactor. However, …


Genetic Study Of Alkane Production And Oxic Nitrogen Fixation In Anabaena Sp. Pcc 7120, Jaimie L. Gibbons Jan 2020

Genetic Study Of Alkane Production And Oxic Nitrogen Fixation In Anabaena Sp. Pcc 7120, Jaimie L. Gibbons

Electronic Theses and Dissertations

Anabaena sp. PCC 7120 is a filamentous, nitrogen-fixing cyanobacterium that uses spatial separation to perform photosynthesis and nitrogen fixation simultaneously. Under fixed nitrogen limiting conditions, Anabaena 7120 forms specialized cells, called heterocysts, to fix nitrogen. In this research, I sought to add to the knowledge surrounding the process of heterocystous nitrogen fixation in Anabaena 7120. Cyanobacteria universally produce alkanes, which have been suggested to play a role in helping the organism adapt to abiotic stress, such as diazotrophic conditions. In my first study, I sought to identify the genes required for production of the hydrocarbon heptadecane (C17H36). Through using a …


Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis Aug 2016

Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis

Doctoral Dissertations

The natural recalcitrance of plant cell walls is a major commercial hurdle for plant biomass to be converted into a viable energy source as alternative to fossil fuels. To circumvent this hurdle manipulation of carbohydrate enzymes active in the cellulose and hemicellulose portions of the plant cell wall can be utilized to improve feedstocks. Production of cellulolytic enzymes by plants have been evaluated for reducing the cost associated with lignocellulosic biofuels. Plants have successfully served as bioreactors producing bacterial and fungal glycosyl hydrolases, which have altered plant growth to improve saccharification. A bioprospecting opportunity lies with the utilization of insect …


Analyzing Environmental Microbes For Genomic Regions Promoting Ionic Liquid Tolerance In E. Coli, Ann Nguyen, Alison Richins, Thomas Rüegg, Steven Singer, Michael Thelen Aug 2012

Analyzing Environmental Microbes For Genomic Regions Promoting Ionic Liquid Tolerance In E. Coli, Ann Nguyen, Alison Richins, Thomas Rüegg, Steven Singer, Michael Thelen

STAR Program Research Presentations

Ionic liquids (ILs) are promising as solvents to increase the efficiency of biofuel production; however, ILs are toxic to microbes used in the fermentation of liquid fuels. To engineer IL resistant biofuel hosts, environmental bacteria were screened for tolerance, and these were used to create gene libraries to test in E. coli. Future characterization of these libraries using molecular techniques will be used to identify genes that contribute IL-tolerance to transformed microbes.