Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Molecular Biology

Biomarkers For Managing Neurodegenerative Diseases, Lara Cheslow, Adam E. Snook, Scott A. Waldman Mar 2024

Biomarkers For Managing Neurodegenerative Diseases, Lara Cheslow, Adam E. Snook, Scott A. Waldman

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Neurological disorders are the leading cause of cognitive and physical disability worldwide, affecting 15% of the global population. Due to the demographics of aging, the prevalence of neurological disorders, including neurodegenerative diseases, will double over the next two decades. Unfortunately, while available therapies provide symptomatic relief for cognitive and motor impairment, there is an urgent unmet need to develop disease-modifying therapies that slow the rate of pathological progression. In that context, biomarkers could identify at-risk and prodromal patients, monitor disease progression, track responses to therapy, and parse the causality of molecular events to identify novel targets for further clinical investigation. …


A Potential Role Of Urinary P75ecd As A Biomarker For Amyotrophic Lateral Sclerosis In An American Cohort, Swati Dhasmana, Anupam Dhasmana, Sheema Khan, Acharan S. Narula, Murali Yallapu, Subhash Chauhan Mar 2024

A Potential Role Of Urinary P75ecd As A Biomarker For Amyotrophic Lateral Sclerosis In An American Cohort, Swati Dhasmana, Anupam Dhasmana, Sheema Khan, Acharan S. Narula, Murali Yallapu, Subhash Chauhan

Research Symposium

Background: Neurological disorders present a unique complexity compared to other diseases, involving multiple risk factors, causes, treatments, and outcomes. These disorders often exhibit various molecular and morphological changes indicative of disruptions in cellular plasticity and resilience. The pathogenesis of many neurological disorders remains unclear, necessitating ongoing investigations. Amyotrophic lateral sclerosis (ALS) exemplifies an idiopathic and fatal neurodegenerative disease marked by the degeneration of upper and lower motor neurons. The average life expectancy post-diagnosis is a mere 36 months, primarily attributed to respiratory muscle denervation.The persistent challenges in ALS clinical trials and the absence of effective therapeutic options have intensified interest …


Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang Jan 2024

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor …


Illuminating Transfer Rna Variants As Genetic Modifiers In Models Of Human Disease, Jeremy T. Lant Feb 2022

Illuminating Transfer Rna Variants As Genetic Modifiers In Models Of Human Disease, Jeremy T. Lant

Electronic Thesis and Dissertation Repository

Transfer RNAs (tRNAs) physically link the genetic code to an amino acid sequence, by recruiting amino acids to three-nucleotide codons in messenger RNAs. To ensure that the genetic code is translated as intended, tRNAs must be accurately aminoacylated and faithfully recognize codons in the ribosome during protein synthesis. Given the critical function of tRNAs, it has often been assumed that mutations in human tRNA genes would be either lethal to cells or not significantly impair tRNA function. My goal was to rigorously test this assumption in mammalian cell models, prompted by the recent discovery of unprecedented variation in human tRNA …


Dnajc7, A Molecular Chaperone Protein That Modulates Protein Misfolding In Amyotrophic Lateral Sclerosis (Als), Meaghan Kathleen Stoltz Sep 2020

Dnajc7, A Molecular Chaperone Protein That Modulates Protein Misfolding In Amyotrophic Lateral Sclerosis (Als), Meaghan Kathleen Stoltz

Electronic Thesis and Dissertation Repository

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease associated with protein misfolding and dysregulated cellular protein quality control mechanisms. Molecular chaperones, and heat shock proteins (Hsp), are key players in maintaining cellular protein quality control. DNAJC7 is an understudied cytosolic Hsp40 that works together with Hsp70 and Hsp90 to regulate proper protein folding or degradation. Of note, mutations in the gene encoding DNAJC7 were discovered to cause familial ALS. We asked whether ALS-associated mutations in DNAJC7 compromise its function as a chaperone, which may cause the toxic accumulation of misfolded proteins. This study attempts to uncover the functions of DNAJC7 …


Characterizing Novel Pathways For Regulation And Function Of Ataxin-2, Elise Spencer Melhado Jul 2019

Characterizing Novel Pathways For Regulation And Function Of Ataxin-2, Elise Spencer Melhado

Theses and Dissertations

Ataxin-2 is an RNA-binding protein that is involved in many crucial cellular processes such as R-loop regulation, mRNA stability, TOR signaling regulation, and stress granule formation. Ataxin-2 is highly conserved, found in organisms ranging from Saccharomyces cerevisiae to Caenorhabditis elegans and Homo sapiens. Recently, ataxin-2 has been linked to the neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). ALS is a fatal disease that causes loss of motor neurons. In addition to ataxin-2 interacting with known ALS risk factor proteins, research into the relationship between ataxin-2 and ALS shows that polyglutamine expansions in ataxin-2 are gain-of-function mutations that lead to overactivity of …


Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn Jan 2019

Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron death and subsequent muscle atrophy. Approximately 15% of ALS cases are inheritable, and mutations in the Fused in Sarcoma (FUS) gene contribute to approximately 5% of these cases, as well as about 2% of sporadic cases. FUS performs a diverse set of cellular functions, including being a major regulator of RNA metabolism. FUS undergoes liquid- liquid phase transition in vitro, allowing for its participation in stress granules and RNA transport granules. Phase transition also contributes to the formation of cytoplasmic inclusions found in the …


Studying Aggregate Formation By Amyotrophic Lateral Sclerosis-Associated Mutant Sod1 Protein In Drosophila Model, Michael Mccarthy Aug 2013

Studying Aggregate Formation By Amyotrophic Lateral Sclerosis-Associated Mutant Sod1 Protein In Drosophila Model, Michael Mccarthy

Dissertations & Theses (Open Access)

A common pathological hallmark of most neurodegenerative disorders is the presence of protein aggregates in the brain. Understanding the regulation of aggregate formation is thus important for elucidating disease pathogenic mechanisms and finding effective preventive avenues and cures. Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a selective neurodegenerative disorder predominantly affecting motor neurons. The majority of ALS cases are sporadic, however, mutations in superoxide dismutase 1 (SOD1) are responsible for about 20% of familial ALS (fALS). Mutated SOD1 proteins are prone to misfold and form protein aggregates, thus representing a good candidate for studying aggregate formation. …