Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Proteomic And Biochemical Studies Of Estrogen-Mediated Signaling And Novel Estrogen Receptor-Interacting Proteins In Breast Cancer Cells, Zhenqi Zhou Aug 2013

Proteomic And Biochemical Studies Of Estrogen-Mediated Signaling And Novel Estrogen Receptor-Interacting Proteins In Breast Cancer Cells, Zhenqi Zhou

Graduate Theses and Dissertations

Estrogen plays essential roles in the growth, development, and homeostasis of a number of tissues, and can also be linked to the growth of breast cancer. The biological activities of estrogen are mediated by estrogen receptors (ERs) ERá and ERâ, and also orphan G-protein-coupled receptor 30 (GPR30). In order to identify novel proteins that are involved in ER-mediated actions of estrogen, we used mass spectrometry-based quantitative proteomic methods to systematically profile global protein expression in responses to E2 (17â-estradiol) stimulation in human breast cancer cell, and identify and characterize cellular novel proteins that are associated with ERs in breast cancer …


Interaction Between Brk And Her2 In Breast Cancer, Midan Ai May 2013

Interaction Between Brk And Her2 In Breast Cancer, Midan Ai

Dissertations & Theses (Open Access)

INTERACTION BETWEEN BRK AND HER2 IN BREAST CANCER

Midan Ai, Ph.D.

Supervisory Professor: Zhen Fan, M.D.

Breast tumor kinase (Brk) is a nonreceptor protein-tyrosine kinase that is highly expressed in approximately two thirds of breast cancers but is not detectable or is expressed at very low levels in normal mammary epithelium. Brk plays important roles in promoting proliferation, survival, invasion, and metastasis of breast cancer cells, but the mechanism(s) of which remain largely unknown. Recent studies showed that Brk is frequently co-overexpressed with human epidermal growth factor receptor-2 (HER2) and is physically associated with HER2 in breast cancer. The mechanism …


Expansion Of Breast Cancer Stem Cells With Fibrous Scaffolds, Sheng Feng, Pang-Kuo Lo, Shou Liu, Xinfeng Liu, Hexin Chen, Qian Wang Mar 2013

Expansion Of Breast Cancer Stem Cells With Fibrous Scaffolds, Sheng Feng, Pang-Kuo Lo, Shou Liu, Xinfeng Liu, Hexin Chen, Qian Wang

Faculty Publications

Cancer stem cells (CSCs) are hypothesized as tumor-initiating cells within tumors and main contributors of tumor growth, metastasis and recurrence. Mammary cancer cells, MCF-7 cells, were cultured on 3D polycaprolactone (PCL) fibrous scaffolds, showing an increased proportion of CSCs. The expression of stem cell markers, including OCT3/4 and SOX2, and breast CSC-specific markers, SOX4 and CD49f, was significantly upregulated, and the mammosphere-forming capability in cells cultured on PCL fibrous scaffolds increased. The fibrous scaffolds also induced the elongation of MCF-7 cells and extended cell proliferation. The increase of CSC properties after being cultured on fibrous scaffolds was further confirmed with …


Identification Of Epithelial Stromal Interaction 1 And Epidermal Growth Factor Receptor As Novel Kruppel-Like Factor 8 Targets In Promoting Breast Cancer Progression, Tianshu Li Jan 2013

Identification Of Epithelial Stromal Interaction 1 And Epidermal Growth Factor Receptor As Novel Kruppel-Like Factor 8 Targets In Promoting Breast Cancer Progression, Tianshu Li

Electronic Theses and Dissertations

Breast cancer is the major cause of cancer death among women worldwide. Understanding the mechanisms underlying breast cancer progression remains urgent for developing effective treatment strategies to eliminate breast cancer mortality. Our recent studies have demonstrated that Krüppel-like transcriptional factor 8 (KLF8) plays a critical role for breast cancer progression. Other studies have shown that Epithelial stromal interaction 1 (EPSTI1), a recently identified stromal fibroblast-induced gene in non-invasive breast cancer cells and epidermal growth factor receptor (EGFR) are highly overexpressed in aggressively invasive breast carcinomas including triple negative breast cancers. In this thesis project, we demonstrate high co-overexpression of KLF8 …


Acidic Pericellular Ph: Effects On Proteolysis And Gene Expression As Determined In 3d Models Of Breast Carcinoma, Jennifer M. Rothberg Jan 2013

Acidic Pericellular Ph: Effects On Proteolysis And Gene Expression As Determined In 3d Models Of Breast Carcinoma, Jennifer M. Rothberg

Wayne State University Dissertations

Among the non-cellular microenvironmental factors that contribute to malignancy of solid tumors is an acidic peritumoral pH. The first objective was to determine if an acidic extracellular pH observed in vivo (i.e., pHe 6.8) affects the activity of proteases, such as cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional cultures. At pHe 6.8 there were increases in pericellular active cysteine cathepsins and in degradation of DQ-collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of …