Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Exploring The Structure And Biochemistry Of Oxidation-Mediated Inhibitation Of The Peptidyl-Prolyl Isomerase Pin1, Brendan T. Innes Dec 2013

Exploring The Structure And Biochemistry Of Oxidation-Mediated Inhibitation Of The Peptidyl-Prolyl Isomerase Pin1, Brendan T. Innes

Electronic Thesis and Dissertation Repository

Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that has been shown to be neuroprotective in aging-related neurodegenerative diseases such as Alzheimer's disease (AD). However, it is not active in AD brain, and a recent proteomic screen of Mild Cognitive Impairment (MCI) brain samples revealed that Pin1 is oxidized in the brains of these pre-AD patients. This suggests that this oxidation may be the cause of the loss of the neuroprotective Pin1 function in AD. The Pin1 active site contains a functionally critical cysteine residue (Cys113) with a low predicted pKa, making it highly susceptible to oxidation. We hypothesize that Pin1 is …


The N-Terminus Of The Saccharomyces Cerevisiae G Protein-Coupled Receptor Ste2p: Formation Of Dimer Interfaces And Negative Regulation, Mohammad Seraj Uddin Aug 2013

The N-Terminus Of The Saccharomyces Cerevisiae G Protein-Coupled Receptor Ste2p: Formation Of Dimer Interfaces And Negative Regulation, Mohammad Seraj Uddin

Doctoral Dissertations

G protein-coupled receptors (GPCRs), the largest family of membrane proteins on the cell surface, play essential roles in signal transduction in all eukaryotic organisms. These proteins are responsible for sensing and detecting a wide range of extracellular stimuli and translating them to intracellular responses. This signaling requires a tight control for receptor activation without which abnormal signal leads to diseases. In fact, malfunctions of these receptors are associated with numerous pathological conditions and currently an estimated 40-50% of therapeutic drugs are designed to target these receptors suggesting that further increases in understanding of GPCRs and the signaling pathways they initiate …


Bayesian Reconstruction Of P(R) Directly From Two-Dimensional Detector Images Via A Markov Chain Monte Carlo Method, Sudeshna Paul, Alan M. Friedman, Chris Bailey-Kellogg, Bruce Craig Apr 2013

Bayesian Reconstruction Of P(R) Directly From Two-Dimensional Detector Images Via A Markov Chain Monte Carlo Method, Sudeshna Paul, Alan M. Friedman, Chris Bailey-Kellogg, Bruce Craig

Dartmouth Scholarship

The interatomic distance distribution, P(r), is a valuable tool for evaluating the structure of a molecule in solution and represents the maximum structural information that can be derived from solution scattering data without further assumptions. Most current instrumentation for scattering experiments (typically CCD detectors) generates a finely pixelated two-dimensional image. In contin­uation of the standard practice with earlier one-dimensional detectors, these images are typically reduced to a one-dimensional profile of scattering inten­sities, I(q), by circular averaging of the two-dimensional image. Indirect Fourier transformation methods are then used to reconstruct P(r) from …


Dna-Binding Site Recognition By Bhlh And Mads-Domain Transcription Factors, Joshua R. Werkman Jan 2013

Dna-Binding Site Recognition By Bhlh And Mads-Domain Transcription Factors, Joshua R. Werkman

Theses and Dissertations--Plant and Soil Sciences

Herewithin, two transcription factor (TF) regulatory complexes were investigated. A bHLH–MYB–WDR (BMW) DNA-binding complex from maize was the first complex to be studied. R, a maize bHLH involved in the activation of genes in the anthocyanin pathway, had been characterized to indirectly bind DNA despite the presence of a functional DNA-binding domain. Findings presented here reveal that this is only partially correct. Direct DNA-binding by R was found to be dependent upon two distinct dimerization domains that function as a switch. This switch-like mechanism allows R to be repurposed for the activation of promoters of differing cis-element structure.

The …


Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood Jan 2013

Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood

Theses and Dissertations--Molecular and Cellular Biochemistry

Lafora disease (LD) is a rare yet invariably fatal form of epilepsy characterized by progressive degeneration of the central nervous and motor systems and accumulation of insoluble glucans within cells. LD results from mutation of either the phosphatase laforin, an enzyme that dephosphorylates cellular glycogen, or the E3 ubiquitin ligase malin, the binding partner of laforin. Currently, there are no therapeutic options for LD, or reported methods by which the specific activity of glucan phosphatases such as laforin can be easily measured. To facilitate our translational studies, we developed an assay with which the glucan phosphatase activity of laforin as …