Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil Jun 2010

Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased …


Mimosa: A System For Minimotif Annotation, Jay Vyas, Ronald J. Nowling, Thomas Meusburger, David P. Sargeant, Krishna Kadaveru, Michael R. Gryk, Vamsi Kundeti, Sanguthevar Rajasekaran, Martin Schiller May 2010

Mimosa: A System For Minimotif Annotation, Jay Vyas, Ronald J. Nowling, Thomas Meusburger, David P. Sargeant, Krishna Kadaveru, Michael R. Gryk, Vamsi Kundeti, Sanguthevar Rajasekaran, Martin Schiller

Life Sciences Faculty Research

BACKGROUND:

Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature.

RESULTS:

We have built the MimoSA application for minimotif annotation. The application supports management of …


Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller Apr 2010

Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller

Life Sciences Faculty Research

Background

Minimotifs are short contiguous peptide sequences in proteins that are known to have a function in at least one other protein. One of the principal limitations in minimotif prediction is that false positives limit the usefulness of this approach. As a step toward resolving this problem we have built, implemented, and tested a new data-driven algorithm that reduces false-positive predictions.

Methodology/Principal Findings

Certain domains and minimotifs are known to be strongly associated with a known cellular process or molecular function. Therefore, we hypothesized that by restricting minimotif predictions to those where the minimotif containing protein and target protein have …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …