Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Definition Of The Landscape Of Chromatin Structure At The Frataxin Gene In Friedreich’S Ataxia, Eunah Kim Dec 2011

Definition Of The Landscape Of Chromatin Structure At The Frataxin Gene In Friedreich’S Ataxia, Eunah Kim

Dissertations & Theses (Open Access)

Friedreich’s ataxia (FRDA) is caused by the transcriptional silencing of the frataxin (FXN) gene. FRDA patients have expansion of GAA repeats in intron 1 of the FXN gene in both alleles. A number of studies demonstrated that specific histone deacetylase inhibitors (HDACi) affect either histone modifications at the FXN gene or FXN expression in FRDA cells, indicating that the hyperexpanded GAA repeat may facilitate heterochromatin formation. However, the correlation between chromatin structure and transcription at the FXN gene is currently limited due to a lack of more detailed analysis. Therefore, I analyzed the effects of the hyperexpanded GAA …


Mechanism Of Transcriptional Suppression Of A Phytochrome A Epiallele In Arabidopsis Thaliana, Gulab D. Rangani Aug 2011

Mechanism Of Transcriptional Suppression Of A Phytochrome A Epiallele In Arabidopsis Thaliana, Gulab D. Rangani

Graduate Theses and Dissertations

Cytosine methylation in DNA is an integral part of epigenetically controlled regulatory networks in eukaryotes. Both plants and vertebrates display DNA methylation in the gene coding region; however, its role in gene expression is not well understood. Gene promoter, on the other hand, remains largely unmethylated. Acquisition of methylation in promoter results in transcriptional suppression of the gene. The goal of this research is to study the effect of coding region methylation in gene expression using a unique gene model, phyA'. phyA' is a transcriptionally suppressed epiallele of the Arabidopsis thaliana Phytochrome A gene, which contains methylation in CG sites …


The Specific Role Of The Mll Cxxc Domain In Mll Fusion Protein Function, Laurie Ellen Risner Jan 2011

The Specific Role Of The Mll Cxxc Domain In Mll Fusion Protein Function, Laurie Ellen Risner

Dissertations

The MLL gene was first identified because it is involved in chromosome translocations which produce novel fusion proteins that cause leukemia. The CXXC domain of MLL is a cysteine rich DNA binding domain with specificity for binding unmethylated CpG-containing DNA. The CXXC domain is retained in oncogenic MLL fusions, and is absolutely required for the fusions to cause leukemia. This project explored the role of the CXXC domain by introducing structure-informed point mutations within the MLL CXXC domain that disrupt DNA binding, and by performing domain swap experiments in which different CXXC domains from other proteins, including DNMT1, CGBP and …