Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel Sep 2014

Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel

USF Tampa Graduate Theses and Dissertations

This dissertation is devoted to the study of the molecular biology of major tumor suppressors, defined as those that prevent the cellular processes identified as the hallmarks of cancer. Specifically, the major tumor suppressors pRb and STK11 are explored in the context of osteosarcoma and lung cancer, respectively.

RB1 was the first tumor suppressor gene discovered. Over four decades of work have revealed that the Rb protein (pRb) is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability and apoptosis. While these many processes …


A Novel Function For 12-Lipoxygenase In C-Met And Integrin Β4 Axis Crosstalk, Elizabeth Tovar Jan 2014

A Novel Function For 12-Lipoxygenase In C-Met And Integrin Β4 Axis Crosstalk, Elizabeth Tovar

Wayne State University Dissertations

Cancer cell metastasis is the single most threatening occurrence of tumor progression and predicts patient prognosis as well as survival. Invasion can be regulated by the Met receptor tyrosine kinase (c-Met), integrin beta4, and the lipid enzyme, 12-Lipoxygenase (12-LOX). Therefore we sought to determine if beta4, c-MET and 12-LOX comprise a signaling axis. c-Met is implicated in cancer cell dissemination through regulation of invasion in EMT where cell-cell junctions are disturbed to allow motility. Furthermore, beta4 promotes cellular adhesion to the extracellular matrix through hemidesmosomes. However, the homeostatic signaling functions of beta4's cytoplasmic tail can be hijacked by growth factor …