Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Molecular Biology

Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel Sep 2014

Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel

USF Tampa Graduate Theses and Dissertations

This dissertation is devoted to the study of the molecular biology of major tumor suppressors, defined as those that prevent the cellular processes identified as the hallmarks of cancer. Specifically, the major tumor suppressors pRb and STK11 are explored in the context of osteosarcoma and lung cancer, respectively.

RB1 was the first tumor suppressor gene discovered. Over four decades of work have revealed that the Rb protein (pRb) is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability and apoptosis. While these many processes …


Role And Regulation Of Snon/Skil And Plscr1 Located At 3q26.2 And 3q23, Respectively, In Ovarian Cancer Pathophysiology, Madhav Karthik Kodigepalli Sep 2014

Role And Regulation Of Snon/Skil And Plscr1 Located At 3q26.2 And 3q23, Respectively, In Ovarian Cancer Pathophysiology, Madhav Karthik Kodigepalli

USF Tampa Graduate Theses and Dissertations

Ovarian cancer is one of the most common causes of gynecological cancer related deaths in women. In 2014, the estimated number of deaths due to ovarian cancer is 14,270 with occurrence of over 22, 240 new cases (National Cancer Institute, http://seer.cancer.gov/statfacts/html/ovary.html). Despite improvement in treatment strategies, the 5-year survival rate is still below 50% mainly due to chemoresistance and relapse. Amplification of chromosomal region 3q26 is a common characteristic in various epithelial cancers including ovarian cancer. This region harbors various oncogenes including the TGFβ signaling mediators EVI1 and SnoN/SkiL, PKCι and PIK3CA amplified at 3q26.2 and 3q26.3, respectively, in ovarian …


Eukaryotic Gene Expression Patterns Of Microorganisms In The Amazon River Plume Parallel The Biogeochemistry Of Plume Waters, Brian L. Zielinski Sep 2014

Eukaryotic Gene Expression Patterns Of Microorganisms In The Amazon River Plume Parallel The Biogeochemistry Of Plume Waters, Brian L. Zielinski

USF Tampa Graduate Theses and Dissertations

Unraveling the microbiological processes that occur as water travels from a river's mouth into the ocean is critical to understanding the role of river plumes in global biogeochemical cycles. Metranscriptomics, the gene expression of a whole community of organisms, was utilized to examine six stations along the Amazon River Plume (ARP) in 2010 to test thehypothesis that there were measurable differences in gene expression for key biogeochemical genes along the ARP. This body of work focuses on methods developed to identify which genes are biogeochemically important for a particular environment along extreme salinity, nutrient and community gradients in the ARP, …


The Interrelationship Of Brca1 185delag, Interleukin-1Β, And Ovarian Oncogenesis, Kamisha Woolery Jun 2014

The Interrelationship Of Brca1 185delag, Interleukin-1Β, And Ovarian Oncogenesis, Kamisha Woolery

USF Tampa Graduate Theses and Dissertations

While the etiology of ovarian cancer (OC) is not completely understood, evidence suggests that chronic inflammation may promote malignant transformation. However, familial history remains the strongest risk factor for developing OC and is associated with germline BRCA1 mutations, such as the 185delAG mutation. Normal human ovarian surface epithelial cells expressing the 185delAG mutant, BRAT, exhibit molecular and pathological changes that may contribute to OC oncogenesis. In the current study, I sought to determine whether BRAT could promote an inflammatory phenotype by investigating BRAT's impact on the expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Using a culture model system of normal …


Rna Detection Technology For Applications In Marine Science: Microbes To Fish, Robert Michael Ulrich Jun 2014

Rna Detection Technology For Applications In Marine Science: Microbes To Fish, Robert Michael Ulrich

USF Tampa Graduate Theses and Dissertations

The accurate identification of taxa from mixed assemblages using genetic analysis remains an important field of molecular biology research. The common principle behind the development of numerous documented genetic detection technologies is to exploit specific nucleotide sequences inherent to each taxon. This body of work focuses on practical applications of real-time nucleic acid sequence-based amplification (RT-NASBA) in marine science, and is presented in four case studies. Each study represents novel work in the genetic identification of respective taxa of interest using RT-NASBA. Two case studies documented the development of an assay targeting mitochondrial 16S rRNA to discern legally salable grouper …


Novel Cell Cycle Proteins In Apicomplexan Parasites, Carrie Butler Jun 2014

Novel Cell Cycle Proteins In Apicomplexan Parasites, Carrie Butler

USF Tampa Graduate Theses and Dissertations

Apicomplexans are responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii (T. gondii) and the deadliest form of malaria caused by Plasmodium falciparum (P. falciparum). The genomes of these pathogens are now sequenced ushering in a new era of drug development. A major hurdle to exploiting this genome resource is that a large number of the encoded genes are "hypotheticals" and have yet to be characterized. Hypothetical proteins comprise roughly half of the predicted gene complement of T. gondii and P. falciparum and represent the largest class of uniquely functioning proteins in these parasites.

Following the idea …


Genetic Basis For The Virulence Of Enterohemorrhagic Escherichia Coli Strain Tw14359, Jason Kyle Morgan May 2014

Genetic Basis For The Virulence Of Enterohemorrhagic Escherichia Coli Strain Tw14359, Jason Kyle Morgan

USF Tampa Graduate Theses and Dissertations

Enterohemorrhagic Escherichia coli (EHEC) is a virulent pathotype of E. coli that is associated with major outbreaks of hemorrhagic colitis and the life-threatening kidney disease hemolytic uremic syndrome. For successful host colonization and attachment to the intestinal mucosa, EHEC requires the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system (TTSS) responsible for secreting and translocating effector proteins into host colonocytes. Regulation of the LEE is primarily directed through the first operon, LEE1, encoding the locus encoded regulator (Ler), and occurs through the direct and indirect action of several regulators. The 2006 U.S. spinach outbreak …


Novel Roles Of The Protein Tyrosine Phosphatase Shp2 In Non-Small Cell Lung Cancer, Valentina Schneeberger May 2014

Novel Roles Of The Protein Tyrosine Phosphatase Shp2 In Non-Small Cell Lung Cancer, Valentina Schneeberger

USF Tampa Graduate Theses and Dissertations

The gene PTPN11 was identified in the early 1990s, and encodes the non-transmembrane protein tyrosine phosphatase SHP2. SHP2 is expressed ubiquitously in cells, and plays an important role in cancer. Unlike most phosphatases, SHP2 positively regulates several signaling pathways including the Ras/MAPK and Src signaling pathways and acts as a proto-oncogene. SHP2 is also a cancer essential gene in certain types of carcinomas, and promotes growth, survival, and epithelial to mesenchymal transformation. Gain of function (GOF) SHP2 mutations are known leukemic oncogenes, and have been identified to a smaller extent in solid tumors as well. Currently, the roles of SHP2 …


Potential Targeted Therapeutic Strategies For Overcoming Resistance In Braf Wild Type Melanoma, Vito William Rebecca May 2014

Potential Targeted Therapeutic Strategies For Overcoming Resistance In Braf Wild Type Melanoma, Vito William Rebecca

USF Tampa Graduate Theses and Dissertations

Melanoma manifests itself from the malignant transformation of melanocytes and represents the deadliest form of skin cancer, being responsible for the disproportionate majority of all skin cancer deaths. The 2002 discovery that 50% of all melanoma patients possess activating BRAF mutations ignited a significant paradigm shift in the way the melanoma field approached research and how patients were treated [1]. The era of targeted therapy had begun and with it came successful targeted BRAF inhibitor therapy regimens, which have accomplished improved clinical benefit (response rate, progression free survival, and overall survival) compared with treatment with chemotherapy in three phase III …


Structure-Based Design Of Novel Inhibitors And Ultra High Resolution Analysis Of Ctx-M Beta-Lactamase, Derek Allen Nichols May 2014

Structure-Based Design Of Novel Inhibitors And Ultra High Resolution Analysis Of Ctx-M Beta-Lactamase, Derek Allen Nichols

USF Tampa Graduate Theses and Dissertations

The emergence of CTX-M class-A extended-spectrum β-lactamases, which confer resistance to second and third-generation cephalosporins, poses a serious health threat to the public. CTX-M β-lactamases use a catalytic serine to hydrolyze the β-lactam ring. Specifically, the hydrolysis reaction catalyzed by CTX-M β-lactamase proceeds through a pre-covalent complex, a high-energy tetrahedral acylation intermediate, a low-energy acyl-enzyme complex, a high-energy tetrahedral deacylation intermediate after attack via a catalytic water, and lastly, the hydrolyzed β-lactam ring product which is released from the enzyme complex. The crystallographic structure of CTX-M at sub-angstrom resolution has enabled us to study enzyme catalysis as well as perform …


Pathogenic Mechanisms And Signaling Pathways In Plasmodium Falciparum, Jennifer L. Sedillo Mar 2014

Pathogenic Mechanisms And Signaling Pathways In Plasmodium Falciparum, Jennifer L. Sedillo

USF Tampa Graduate Theses and Dissertations

Plasmodium falciparum is a human intracellular parasite that is the causative agent of a deadly form of malaria. This species alone is responsible for 200 million cases of malaria annually resulting in over 1 million deaths worldwide. The excessive mortality due to P. falciparum infection is due to its ability to cause severe pathogenesis through hyperparasitemia and cytoadherence defined as the ability of infected red blood cells to adhere to host vasculature. Cytoadherence is mediated through the export of parasite proteins to the surface of the infected red blood cell (RBC). Exported proteins have been identified but the pathway for …


Molecular Evidence For Vector Implication Of Onchocerca Lupi In Los Angeles County, Ca, Shanna June Bolcen Mar 2014

Molecular Evidence For Vector Implication Of Onchocerca Lupi In Los Angeles County, Ca, Shanna June Bolcen

USF Tampa Graduate Theses and Dissertations

Onchocerca is a genus of roundworm most commonly associated with the human infection onchocerciasis, or river blindness. While typically a zoonotic infection of ungulate populations, canine cases (Onchocerca lupi) have been identified in the United States and Greece. In 2012, Los Angeles County, Veterinary Public Health Program identified 3 cases of Onchocerca spp. infections in domestic canines. Samples from the ensuing blackfly collections were sent to the Global Health Infectious Disease Research Unnasch Laboratory for parasite isolation and vector species identification. Species-specific primers were designed and optimized for O. lupi using a non- specific cytochrome oxidase (COI) gene target (689bp) …


Sigma Factor N: A Novel Regulator Of Acid Resistance And Locus Of Enterocyte Effacement In Escherichia Coli O157:H7, Avishek Mitra Mar 2014

Sigma Factor N: A Novel Regulator Of Acid Resistance And Locus Of Enterocyte Effacement In Escherichia Coli O157:H7, Avishek Mitra

USF Tampa Graduate Theses and Dissertations

In enterohemorrhagic E. coli (EHEC) sigma factor N (σN) regulates glutamate-dependent acid resistance (GDAR) and the locus of enterocyte effacement (LEE), discrete genetic systems required for transmission and virulence of this intestinal pathogen. Regulation of these systems requires nitrogen regulatory protein C, NtrC, and is a consequence of NtrC/σN-dependent reduction in the activity of sigma factor S (σS). This study elucidates pathway components and stimuli for σN-directed regulation of GDAR and the LEE in EHEC. Deletion of fliZ, the product of which reduces σS activity, phenocopies rpoNN) …


Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke Mar 2014

Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke

USF Tampa Graduate Theses and Dissertations

Toxoplasma gondii is an obligate intracellular protozoan parasite of animals and man. The asexual life cycle of Toxoplasma involves three very distinct, but tightly coordinated developmental stages. In nature, the sporozoite (contained within an oocyst) and bradyzoite (contained within a tissue cyst) initiate infection of the intermediate host, followed by rapid differentiation into the actively replicating tachyzoite. When countered by an effective host response, the tachyzoite differentiates back into the latent bradyzoite and this unique ability of Toxoplasma to interconvert between the replicating tachyzoite and the latent bradyzoite within a single host is the cause of life long infection. The …


Exploration Of Mutations In Erythroid 5-Aminolevulinate Synthase That Lead To Increased Porphyrin Synthesis, Erica Jean Fratz Mar 2014

Exploration Of Mutations In Erythroid 5-Aminolevulinate Synthase That Lead To Increased Porphyrin Synthesis, Erica Jean Fratz

USF Tampa Graduate Theses and Dissertations

5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first committed step of heme biosynthesis in animals, the condensation of glycine and succinyl-CoA yielding 5-aminolevuliante (ALA), CoA, and CO2. Murine erythroid-specific ALAS (mALAS2) variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. Transfection of HeLa cells with expression plasmids for mALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatment of HeLa cells expressing mALAS2 variants revealed …


Immature Myeloid Cells Promote Tumor Formation Via Non-Suppressive Mechanism, Myrna Lillian Ortiz Feb 2014

Immature Myeloid Cells Promote Tumor Formation Via Non-Suppressive Mechanism, Myrna Lillian Ortiz

USF Tampa Graduate Theses and Dissertations

ABSTRACT

Although there is ample evidence linking chronic inflammation with cancer, the cellular mechanisms involved in early events leading to tumor development remain unclear. Myeloid cells are an intricate part of inflammation. They consist of mature cells represented by macrophages, dendritic cells and granulocytes and a population of Immature Myeloid Cells (IMC), which in healthy individuals are cells in transition to mature cells. There is a substantial expansion of IMC in cancer and many other pathological conditions which is associated with pathologic activation of these cells. As a result, these cells acquire the ability to suppress immune responses and are …


Ube3a Role In Synaptic Plasticity And Neurodevelopmental Disorders.The Lessons From Angelman Syndrome., Irina Filonova Feb 2014

Ube3a Role In Synaptic Plasticity And Neurodevelopmental Disorders.The Lessons From Angelman Syndrome., Irina Filonova

USF Tampa Graduate Theses and Dissertations

Angelman Syndrome (AS) is a severe neurodevelopmental disorder that affects 1:12000 newborns. It is characterized by mental retardation, delayed major motor and cognitive milestones, seizures, absence of speech and excessive laughter. The majority of AS cases arise from deletions or mutations of UBE3A gene located on the chromosome 15q11-13. UBE3A codes for E3-ubiquitin ligase that target specific proteins for degradation. To date, a wide variety of Ube3a substrates has been identified. The accumulation of Ube3a-dependent proteins and their effect on the multitude of signal transduction pathways are` considered the main cause of the AS pathology. While the majority of research …