Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

Dissertations & Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms a heterotrimeric …


Pi3k- And Mtor-Dependent Mechanisms Of Lapatinib Resistance And Resulting Therapeutic Opportunities, Samuel Brady Aug 2014

Pi3k- And Mtor-Dependent Mechanisms Of Lapatinib Resistance And Resulting Therapeutic Opportunities, Samuel Brady

Dissertations & Theses (Open Access)

Breast cancers with HER2 amplification represent 20-25% of breast cancer cases and are frequently responsive to the HER2 kinase inhibitor lapatinib, but generally for only short duration. We aimed to understand how breast cancers with HER2 amplification become resistant to lapatinib, in order to identify potential therapies that can overcome lapatinib resistance. To establish lapatinib resistance models we treated three HER2+ breast cancer cell lines with lapatinib for several months until they became lapatinib-resistant. We then compared lapatinib-sensitive (parental) cells with their lapatinib-resistant (LapR) counterparts to identify changes conferring lapatinib resistance. We found that activation of PI3K, specifically the p110α …


Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope Aug 2014

Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope

Dissertations & Theses (Open Access)

The majority of proteins require molecular chaperones to assist their folding into tertiary and quaternary structures. Certain stresses can compromise the weak hydrophobic forces responsible for these structures and lead to protein unfolding, misfolding, and aggregation. Aggregates of proteins are hallmarks of devastating diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Fortunately, bacteria, plants, and fungi have a potent disaggregase, named Hsp104 in Saccharomyces cerevisiae. Recently, heat-induced aggregates, termed Q-bodies, were found to contain three molecular chaperones: Hsp70, Hsp104, and Hsp42. Their coalescence from small puncta into larger inclusions required Hsp104. During glucose deprivation, a stress that isn’t known to …


The Effects Of Lipoxin A4 (Lxa4) On Neutrophil Biology In Sepsis, Benedict Wu Jan 2014

The Effects Of Lipoxin A4 (Lxa4) On Neutrophil Biology In Sepsis, Benedict Wu

Graduate School of Biomedical Sciences Theses and Dissertations

During sepsis, neutrophils are inappropriately activated and have prolonged lifespans, thus becoming dysfunctional. Excessive neutrophil activation can lead to tissue injury while neutrophil dysfunction can lead to decreased free radical production and reduced phagocytosis, preventing the host from clearing preexisting infections. Lipoxin A4 (LXA4) is a specialized pro-resolution mediator which reduces neutrophil migration and expression of proinflammatory mediators. Intact neutrophil functions are critical for the host to efficiently clear invading pathogens. The effects of LXA4 on neutrophil function in sepsis have not been established. Using the cecal ligation and puncture (CLP) model of sepsis, LXA4 administered 1 h after sepsis …