Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Molecular Biology

Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield Dec 2023

Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield

Electronic Theses and Dissertations

Flavonoid glycosyltransferases (GTs), enzymes integral to plant ecological responses and human pharmacology, necessitate rigorous structural elucidation to decipher their mechanistic function and substrate specificity, particularly given their role in the biotransformation of diverse pharmacological agents and natural products. This investigation delved into a comprehensive exploration of the flavonol 3-O GT from Citrus paradisi (Cp3GT), scrutinizing the impact of a c-terminal c-myc/6x histidine tag on its enzymatic activity and substrate specificity, and successfully achieving its purification to apparent homogeneity. This established a strong foundation for potential future crystallographic and other structure/function analyses. Through the strategic implementation of site-directed mutagenesis, a thrombin …


Vitamin D And Its In Vitro Therapeutic Action Mediated Through Vdr Rather Than Pdia3, Jaeden Pyburn May 2022

Vitamin D And Its In Vitro Therapeutic Action Mediated Through Vdr Rather Than Pdia3, Jaeden Pyburn

Undergraduate Honors Theses

Brain calcification is a common occurrence in the aging process, with >20% of individuals over the age of 65 showing hardened plaques in the basal ganglia. Loss of the vitamin D receptor (VDR) in transgenic mice leads to formation of calcified plaques in the basal ganglia and thalamus within the mice. Vitamin D signals through two known vitamin D responsive proteins, protein disulfide isomerase A3 (PDIA3) and VDR. In vitro, vitamin D has been demonstrated to suppress calcification in osteoblast-like cells. Here, we aim to elucidate which of either PDIA3 or VDR transduce vitamin D mediated suppression of calcification in …


A Novel Mode Of Action Of C-Reactive Protein In Protecting Against Streptococcus Pneumoniae Infection And Synergy With Antibiotics, Donald Ngwa May 2020

A Novel Mode Of Action Of C-Reactive Protein In Protecting Against Streptococcus Pneumoniae Infection And Synergy With Antibiotics, Donald Ngwa

Electronic Theses and Dissertations

C-reactive protein (CRP) is a part of the innate immune system, is synthesized in the liver, its blood level increases in inflammatory states, and it binds to Streptococcus pneumoniae. The conformation of CRP is altered under conditions mimicking an inflammatory milieu and this non-native CRP also binds to immobilized/aggregated/pathogenic proteins. Experiments in mice have revealed that one of the functions of CRP is to protect against pneumococcal infection. For protection, CRP must be injected into mice within two hours of administering pneumococci, thus, CRP is protective against early-stage infection but not against late-stage infection. It is unknown how CRP protects …


Protection Against Atherosclerosis By A Non-Native Pentameric Crp That Shares Its Ligand Recognition Functions With An Evolutionarily Distant Crp, Asmita Pathak May 2020

Protection Against Atherosclerosis By A Non-Native Pentameric Crp That Shares Its Ligand Recognition Functions With An Evolutionarily Distant Crp, Asmita Pathak

Electronic Theses and Dissertations

C-reactive protein (CRP) is an acute phase protein of the innate immune system that has been evolutionarily conserved. Human CRP is known to exist in two different pentameric conformations; native CRP and non-native CRP that possess differential ligand recognition functions. The structure of CRP evolved from arthropods to humans, in terms of subunit composition, disulfide bonds, and glycosylation pattern. Along with change in structure, the gene expression pattern of CRP also evolved from a constitutive protein in lower invertebrates to an acute phase protein in humans. The objective of this study was to determine the function of a non-native pentameric …


Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das May 2020

Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das

Undergraduate Honors Theses

Subcellular Localization of Tobacco SABP2 under Normal and Stress Conditions

Salicylic acid (SA), a phytohormone, plays an important role in plant physiology. SA mediated innate immune pathway is an important pathway for plant immunity against pathogens. Plants resisting pathogen infection synthesize higher levels of Methyl Salicylate (MeSA), which is then converted to SA by the esterase activity of Salicylic Acid Binding Protein 2 (SABP2). The high level of the converted SA leads to enhanced pathogen resistance. The study of subcellular localization of a protein is critical in explaining its potential biochemical functions. SABP2 tagged with eGFP was expressed transiently in …


Does Thermotolerance In Daphnia Depend On The Mitochondrial Function?, Rajib Hasan Aug 2019

Does Thermotolerance In Daphnia Depend On The Mitochondrial Function?, Rajib Hasan

Electronic Theses and Dissertations

Thermotolerance limit in aquatic organism is set by the ability to sustain aerobic scope to sudden temperature shifts. This study tested the genetic and plastic differences in thermotolerance of Daphnia that can be explained by the differences in the ability to retain mitochondrial integrity at high temperatures. Five genotypes with different biogeographic origins were acclimated to 18C and 25C. We developed a rhodamine 123 in-vivo assay to measure mitochondrial membrane potential and observed higher fluorescent in heat damaged tissues as the disruption of the mitochondrial membrane potential. Significant effects on temperature tolerance were observed with CCCP …


The Distinct Expressions Of Integrins Αdβ2 And Αmβ2 Differently Regulate Macrophage Migration In 3d Matrix In Vitro And In Tissue During Inflammation, Kui Cui Aug 2019

The Distinct Expressions Of Integrins Αdβ2 And Αmβ2 Differently Regulate Macrophage Migration In 3d Matrix In Vitro And In Tissue During Inflammation, Kui Cui

Electronic Theses and Dissertations

Chronic inflammation is an essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration and accumulation of macrophages in damaged tissues. Macrophage motility is highly regulated by adhesive receptors, integrins. Namely, intermediate expression of integrin supports macrophage migration, while a high integrin density inhibits it. Our studies are focused on evaluation of the contribution of related integrins αDβ2 and αMβ2 to macrophage migration and development of chronic inflammation.

We found that integrin αDβ2 is upregulated on M1-macrophages in vitro and …


Preparation Of A Flavonol Specific Glucosyltransferase Found In Grapefruit And Site-Directed Mutants For Protein Crystallization, Aaron Birchfield May 2019

Preparation Of A Flavonol Specific Glucosyltransferase Found In Grapefruit And Site-Directed Mutants For Protein Crystallization, Aaron Birchfield

Electronic Theses and Dissertations

This research was designed to determine the conditions necessary to remove c-myc and 6x-His tags from a flavonol specific glucosyltransferase found in grapefruit (CP3GT) using thrombin in preparation for crystallization. X-ray crystallography of CP3GT crystals may elucidate structural features that account for flavonol specificity in some glucosyltransferase enzymes. A thrombin cleavage site was inserted into WT CP3GT and one mutant. Recombinant CP3GT was expressed in yeast and purified. Optimal conditions for thrombin digestion were explored. Digestion with 100U of thrombin for 2 hours at 4o C was optimal for removing tags from CP3GT. Storage at 4o C for …


The Chelation Of Metal Ions By Vicibactin, A Siderophore Produced By Rhizobium Leguminosarum Atcc 14479, Joshua Stinnett May 2019

The Chelation Of Metal Ions By Vicibactin, A Siderophore Produced By Rhizobium Leguminosarum Atcc 14479, Joshua Stinnett

Undergraduate Honors Theses

Vicibactin is a small, high-affinity iron chelator produced by Rhizobium leguminosarum ATCC 14479. Previous work has shown that vicibactin is produced and secreted from the cell to sequester ferric iron from the environment during iron-deplete conditions. This ferric iron is then transported into the cell to be converted into ferrous iron. This study uses UV-Vis spectroscopy as well as ion trap-time of flight mass spectroscopy to determine that vicibactin does form a complex with copper(II) ions, however, at a much lower affinity than for iron(III). Stability tests have shown that the copper(II)-vicibactin complex is stable over time. The results of …


Localization Of Sip470, A Plant Lipid Transfer Protein In Nicotiana Tabacum, Shantaya Andrews Dec 2018

Localization Of Sip470, A Plant Lipid Transfer Protein In Nicotiana Tabacum, Shantaya Andrews

Electronic Theses and Dissertations

SABP2-interacting protein 470 (SIP470), a non-specific lipid transfer protein (nsLTP), was discovered in a yeast two-hybrid screening using SABP2 as bait and tobacco leaf proteins as prey. SABP2 is an important enzyme in systemic acquired resistance that converts salicylic acid to methyl salicylate. Localization studies are an important aspect to understanding the biological function of proteins. nsLTPs are generally considered apoplastic proteins and has been localized intracellularly and extracellularly. Transient expression shows highest expression of SIP470-eGFP at 2 days post infiltration into Nicotiana benthamiana. Confocal microscopy showed localization near the periphery of the cell. Subcellular localization using differential centrifugation showed …


Sip-428, A Sir2 Deacetylase Enzyme And Its Role In Biotic Stress Signaling Pathway, Bal Krishna Chand Thakuri Dec 2018

Sip-428, A Sir2 Deacetylase Enzyme And Its Role In Biotic Stress Signaling Pathway, Bal Krishna Chand Thakuri

Electronic Theses and Dissertations

SABP2 (Salicylic Acid Binding Protein 2) plays a vital role in the salicylic acid signaling pathway of plants both regarding basal resistance and systemic acquired resistance against pathogen infection. SIP-428 (SABP2 Interacting Protein-428) is a Silent information regulator 2 (SIR2) like deacetylase enzyme that physically interacts with SABP2 in a yeast two-hybrid interaction and confirmed independently by a GST pull-down assay. We demonstrated that SIP- 428 is an NAD+ dependent SIR2 deacetylase enzyme. Transgenic tobacco plants silenced in SIP- 428 expression via RNAi showed enhanced basal resistance to microbial pathogens. Moreover, these SIP-428-silenced lines also exhibited a robust induction of …


Virulence Regulation In Pseudomonas Aeruginosa Via The Alginate Regulators, Algu And Algr, The Posttranscriptional Regulator, Rsma, And The Two-Component System, Algz/R, Sean Stacey Dec 2018

Virulence Regulation In Pseudomonas Aeruginosa Via The Alginate Regulators, Algu And Algr, The Posttranscriptional Regulator, Rsma, And The Two-Component System, Algz/R, Sean Stacey

Electronic Theses and Dissertations

Pseudomonas aeruginosa is a Gram-negative bacillus able to colonize a wide variety of environments. In the human host, P. aeruginosa can establish an acute infection or persist and create a chronic infection. P. aeruginosa is able to establish a niche and persist in human hosts by using a wide array of virulence factors used for: movement, killing host cells, and evading immune cells and antibiotics. Understanding virulence factors and their regulation has proved to be an important means of combating the morbidity and mortality of P. aeruginosa as well as the ever-increasing threat of drug resistance. By targeting virulence factors …


Role Of Cannabinoid Receptor Type 2 (Cb2) In Late Stage Atherosclerosis, Makenzie Fulmer Dec 2017

Role Of Cannabinoid Receptor Type 2 (Cb2) In Late Stage Atherosclerosis, Makenzie Fulmer

Electronic Theses and Dissertations

Atherosclerosis is a chronic inflammatory disorder of medium and large vessels. Immune signaling and dyslipidemia are two of several processes which influence lesion development in atherosclerosis. Cannabinoids, such as those found in marijuana, exert their effects through two cannabinoid receptors, CB1 and CB2. Recent studies using CB2 knockout mice and CB2-selective ligands have shed light on a protective role of CB2 in early stages of atherosclerosis. However, the role of CB2 in advanced stages of atherosclerosis remains unclear. To determine if CB2 plays a role in advanced atherosclerotic lesion composition and progression, we investigated the effects of systemic CB2 gene …


Determination Of The Substrate Specificity Of Citrus Paradisi Flavonol Specific 3-O-Glucosyltransferase Mutant D344p, Nathan R. Spaulding May 2017

Determination Of The Substrate Specificity Of Citrus Paradisi Flavonol Specific 3-O-Glucosyltransferase Mutant D344p, Nathan R. Spaulding

Undergraduate Honors Theses

Plants produce a vast array of secondary metabolites. A group of phenolic compounds, the flavonoids, are metabolites ubiquitous among plants and are known to aid in processes such as plant reproduction, UV defense, pigmentation and development. In relation to human health, flavonoids have been found to possess anti-inflammatory, anti-cancer, and antioxidant properties. Flavonoid’s ability to participate in so many interactions is due in part to their subclass variation and further chemical modification. One such modification is glucosylation, where a glucose molecule is added to the flavonoid substrate. The enzymes that catalyze these reactions are known as glucosyltransferases (GT). Citrus paradisi …


A Novel Role Of Human Dna Damage Checkpoint Protein Atr In Suppressing Ca2+ Overload-Induced Parp1-Mediated Necrosis, Hui Wang-Heaton Dec 2016

A Novel Role Of Human Dna Damage Checkpoint Protein Atr In Suppressing Ca2+ Overload-Induced Parp1-Mediated Necrosis, Hui Wang-Heaton

Electronic Theses and Dissertations

Ataxia telangiectasia and Rad3-related (ATR) is well known for its regulatory role in DNA damage responses (DDR) as a checkpoint kinase that phosphorylates hundreds of protein substrates. However, its role in cellular non-DNA damage stress responses (NDDR) is unknown. Necrosis is one form of cell death and traditionally has been regarded as a passive and uncontrolled cell death. Recently, evidence has emerged to support the concept that necrosis also may occur in a programmed manner and that PARP1 can be a mediator. Active poly (ADP-ribose) polymerase 1 (PARP1) hydrolyzes nicotinamide adenine dinucleotide (NAD+) to produce poly (ADP-ribose) (PAR) …


Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton May 2016

Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton

Electronic Theses and Dissertations

Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER …


In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard May 2016

In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard

Undergraduate Honors Theses

Atherosclerosis, characterized by the build-up of cholesterol, immune cells and cellular debris within arterial walls, is accelerated following myocardial infarction by poorly understood mechanisms. Ubiquitin, a small, well-studied intracellular protein involved in protein turnover via the proteasome pathway, has recently been shown to exert extracellular effects on cardiac myocytes, in vitro, and in mice undergoing myocardial remodeling. This study investigates the potential role of extracellular ubiquitin in atherosclerosis by determining its effects on two critical atherosclerotic processes: the migration of vascular smooth muscles cells and the uptake of modified LDL by monocyte/macrophages in foam cell formation. In the presence …


Identification Of N-Acylethanolamine Hydrolyzing Enzyme In Solanum Lycopersicum, Derek A. Stuffle May 2016

Identification Of N-Acylethanolamine Hydrolyzing Enzyme In Solanum Lycopersicum, Derek A. Stuffle

Undergraduate Honors Theses

N-acylethanolamines (NAEs) are fatty acid derivatives that occur naturally in plant and animal systems. In mammals, they regulate physiological functions, including neurotransmission, immune responses, vasodilation, embryo development and implantation, feeding behavior, and cell proliferation. NAEs are metabolized by fatty acid amide hydrolase (FAAH), which belongs to the amidase signature family. It is hypothesized that putative FAAH functions as the catalyst in the metabolism of N-acylethanolamine in tomato plants. To test the hypothesis, FAAH protein homologs were identified in tomato via in silico analysis. Among the six homologs identified, FAAH1 and FAAH2 were selected for further validation. This study …


Venom Peptide Induced Inhibition Of Escherichia Coli Atp Synthase, Sofiya Azim May 2015

Venom Peptide Induced Inhibition Of Escherichia Coli Atp Synthase, Sofiya Azim

Undergraduate Honors Theses

ATP is the main cellular energy generated by the enzyme ATP synthase in almost all organisms from bacteria to vertebrates. While malfunction of the ATP synthase complex is responsible for several disease conditions, the enzyme itself can be used as a potent molecular drug target to combat many diseases including microbial infections, cancer, tuberculosis, and obesity. Recent widespread escalation of antibiotic resistant microbes in general and E. coli in particular demands novel alternative approaches to combat microbial infections. Inhibition of ATP synthase by inhibitors such as peptides is known to deprive microbes of required energy, resulting in microbial cell death. …


Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean Dec 2014

Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean

Electronic Theses and Dissertations

Plants are in a perpetual evolutionary arms race with a wide range of pathogens. Their sessile nature has led plants to evolve defense mechanisms that can quickly recognize a unique stressor and deploy a resistance tailored for a specific attack. The salicylic acid (SA) mediated defense pathway has been shown to be one of the major defense tactics plants can initiate to defend themselves against microbial pathogens. Following a pathogen attack high levels of methyl salicylate (MeSA) are produced that can be converted to SA by the enzyme salicylic acid binding protein 2 (SABP2). A yeast two-hybrid screening was performed …


Regulation Of C-Reactive Protein Gene Expression And Function, Avinash N. Thirumalai Dec 2014

Regulation Of C-Reactive Protein Gene Expression And Function, Avinash N. Thirumalai

Electronic Theses and Dissertations

Human C-reactive protein (CRP) is the prototypic acute phase protein whose serum concentration increases rapidly during inflammation. CRP is also associated with atherosclerosis; it is deposited at lesion sites where it may interact with modified lipoproteins. There are 2 major questions regarding CRP: 1. How is the serum concentration of CRP regulated? 2. What are the functions of CRP in atherosclerosis?

Our first aim was to determine the role of the constitutively expressed transcription factor Oct-1 in regulating CRP gene expression. We found that Oct-1 overexpression inhibited (IL-6+IL-1β)- induced CRP gene expression; maximal inhibition required the binding of Oct-1 to …


Characterization Of A Putative Sir2 Like Deacetylase And Its Role In Sabp2 Dependent Salicylic Acid Mediated Pathways In Plant, Md I. Haq Aug 2014

Characterization Of A Putative Sir2 Like Deacetylase And Its Role In Sabp2 Dependent Salicylic Acid Mediated Pathways In Plant, Md I. Haq

Electronic Theses and Dissertations

Salicylic Acid Binding Protein2 (SABP2) is an enzyme known to play important role in SA mediated pathway. SBIP-428 (SABP2 Interacting Protein-428), a SIR2 like deacetylase, has been found to interact with SABP2. We demonstrate that SBIP-428 functions as a Sirtuin deacetylase. We show that SBIP-428 itself is lysine acetylated. Interactions of a SBIP-428 with SABP2 also raised the possibility of SABP2 itself being lysine acetylated. The recombinant purified SABP2 or native partially purified SABP2 displayed no acetylation. In response to TMV infection, the expression of SBIP-428 was down regulated at 48 hpi. In addition, SBIP-428 was up regulated in plant …


Mechanisms Of The Anti-Pneumococcal Function Of C-Reactive Protein, Toh B. Gang Dec 2013

Mechanisms Of The Anti-Pneumococcal Function Of C-Reactive Protein, Toh B. Gang

Electronic Theses and Dissertations

Human C-reactive protein (CRP) increases survival of and decreases bacteremia in mice infected with Streptococcus pneumoniae. Such protection of mice against pneumococcal infection is seen only when CRP is administered into mice 6 hours before to 2 hours after the injection of pneumococci, but not when CRP is given to mice at a later time. Our first aim was to define the mechanism of CRP-mediated initial protection of mice against infection. It was proposed that CRP binds to phosphocholine (PCh) moieties present in the cell wall and activates the complement system on the pneumococcal surface that kills the pathogen. …


The Influence Of A Human Repetitive Dna On Genome Stability, Eugenia L. Posey May 1998

The Influence Of A Human Repetitive Dna On Genome Stability, Eugenia L. Posey

Electronic Theses and Dissertations

A uniquely human interspersed repetitive DNA sequence family, the L2Hs, are highly polymorphic in human genomes. Several features of interspersed repeated DNA may contribute to the instability observed. Certain motifs (direct repeats, palindromes, and inverted repeats) comprising L2Hs elements may adopt unusual secondary structures such as cruciforms or hairpins. These motifs have been associated with features of genome instability in recombination, insertions and deletions. The L2Hs elements also are AT-rich (76%) compared to the bulk of human DNA (52%). That their dynamic nature (i.e. polymorphisms) may arise from recombination, insertions and deletions has led to the hypothesis that the L2Hs …


Endogenous Alkylglycerol Functions As A Mediator Of Protein Kinase C Activity And Cell Proliferation, Fritz G. Buchanan May 1997

Endogenous Alkylglycerol Functions As A Mediator Of Protein Kinase C Activity And Cell Proliferation, Fritz G. Buchanan

Electronic Theses and Dissertations

To explore the possibility that 1-O-alkyl-sn-glycerol (alkylglycerol) may serve a regulatory role in the control of cell proliferation or PKC activity, we examined the ability of alkylglycerol to influence PKC activity and subcellular distribution as well as the ability of alkylglycerol to effect cell proliferation. MDCK cells grown to confluence show a loss of PKC activity associated with the membrane, as reported in fibroblasts. Preconfluent cultures of MDCK cells have a high level of PKC activity associated with the membrane. However, treatment of preconfluent cultures with alkylglycerol causes a reduction of PKC activity. A similar inhibition was observed with alkylglycerol …


A Molecular Basis For Erythromycin Sensitivity And Resistance In Escherichia Coli, Harold S. Chittum Dec 1993

A Molecular Basis For Erythromycin Sensitivity And Resistance In Escherichia Coli, Harold S. Chittum

Electronic Theses and Dissertations

The effect of erythromycin on the 50S ribosomal subunit during cell growth has been extensively investigated. Sucrose density gradient analysis of ribosomes formed in the presence and absence of the drug revealed a 50S specific assembly defect is partially responsible for erythromycin's inhibitory effects on wild type cells. Examination of two erythromycin-resistant mutants of E. coli (N281 and N282) revealed that mutant N281 (L22 mutant) but not N282 (L4 mutant) was assembly defective in the presence of the drug, although only at much higher drug concentrations (300 ug/ml vs. 75 ug/ml for wild type cells). The altered genes from each …


Mouse Mast Cell Proteases: Induction, Molecular Cloning, And Characterization, Wei Chu May 1991

Mouse Mast Cell Proteases: Induction, Molecular Cloning, And Characterization, Wei Chu

Electronic Theses and Dissertations

Tryptase, a mast cell-specific serine protease with trypsin-like specificity, has been identified in a mouse mast cell line (ABFTL-6) based on it's enzymatic activity, inhibition properties, and cross-reactivity to a human mast cell tryptase antibody. The effects of fibroblast-conditioned medium and sodium butyrate on ABFTL-6 mast cell differentiation and tryptase expression have been examined. ABFTL-6 mouse mast cells undergo phenotypic changes upon culturing in media supplemented with fibroblast-conditioned media at 50% or 1 mM sodium butyrate. The induced cells increased in size, had larger and more metachromatic cytoplasmic granules, and increased their total cellular protein about four-fold. Tryptase activity increased …


A Temperature-Sensitive Mutant Of Escherichia Coli Affected In The Alpha Subunit Of Rna Polymerase, Majid Mehrpouyan Dec 1990

A Temperature-Sensitive Mutant Of Escherichia Coli Affected In The Alpha Subunit Of Rna Polymerase, Majid Mehrpouyan

Electronic Theses and Dissertations

A temperature-sensitive mutant of Escherichia coli affected in the alpha subunit of RNA polymerase has been investigated. Gene mapping and complementation experiments placed the mutation to temperature-sensitivity within the alpha operon at 72 min on the bacterial chromosome. The rate of RNA synthesis in vivo and the accumulation of ribosomal RNA were significantly reduced in the mutant at 44$\sp\circ$C. The thermostability at 44$\sp\circ$C of the purified holoenzyme from mutant cells was about 20% of that of the normal enzyme. Assays with T7 DNA as a template showed that the fraction of active enzyme competent for transcription was reduced as a …