Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

East Tennessee State University

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 35

Full-Text Articles in Molecular Biology

Virulence Regulation In Pseudomonas Aeruginosa Via The Alginate Regulators, Algu And Algr, The Posttranscriptional Regulator, Rsma, And The Two-Component System, Algz/R, Sean Stacey Dec 2018

Virulence Regulation In Pseudomonas Aeruginosa Via The Alginate Regulators, Algu And Algr, The Posttranscriptional Regulator, Rsma, And The Two-Component System, Algz/R, Sean Stacey

Electronic Theses and Dissertations

Pseudomonas aeruginosa is a Gram-negative bacillus able to colonize a wide variety of environments. In the human host, P. aeruginosa can establish an acute infection or persist and create a chronic infection. P. aeruginosa is able to establish a niche and persist in human hosts by using a wide array of virulence factors used for: movement, killing host cells, and evading immune cells and antibiotics. Understanding virulence factors and their regulation has proved to be an important means of combating the morbidity and mortality of P. aeruginosa as well as the ever-increasing threat of drug resistance. By targeting virulence factors ...


Determination Of The Substrate Specificity Of Citrus Paradisi Flavonol Specific 3-O-Glucosyltransferase Mutant D344p, Nathan R. Spaulding May 2017

Determination Of The Substrate Specificity Of Citrus Paradisi Flavonol Specific 3-O-Glucosyltransferase Mutant D344p, Nathan R. Spaulding

Undergraduate Honors Theses

Plants produce a vast array of secondary metabolites. A group of phenolic compounds, the flavonoids, are metabolites ubiquitous among plants and are known to aid in processes such as plant reproduction, UV defense, pigmentation and development. In relation to human health, flavonoids have been found to possess anti-inflammatory, anti-cancer, and antioxidant properties. Flavonoid’s ability to participate in so many interactions is due in part to their subclass variation and further chemical modification. One such modification is glucosylation, where a glucose molecule is added to the flavonoid substrate. The enzymes that catalyze these reactions are known as glucosyltransferases (GT). Citrus ...


Pharmacokinetics, Tissue Distribution, Synergistic Activity, And Antitumor Activity Of Two Isomeric Flavones, Crystal L. Whitted Dec 2016

Pharmacokinetics, Tissue Distribution, Synergistic Activity, And Antitumor Activity Of Two Isomeric Flavones, Crystal L. Whitted

Electronic Theses and Dissertations

Flavonoids are polyphenolic secondary metabolites found in plants that have bioactive properties including antiviral, antioxidant, and anticancer. Two isomeric flavone were extracted from Gnaphalium elegans and Achyrocline bogotensis, plants used by the people from the Andean region of South America as remedies for cancer. 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone/ flavone A) and 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3, 5–dihydroxy-6, 7, 8–trimethoxy flavone/ flavone B) have shown antineoplastic activity against colon cancer cell lines dependent upon their differentiation status. Pharmacokinetic studies reported herein were used to determine dosing for antitumor assays, as ...


A Novel Role Of Human Dna Damage Checkpoint Protein Atr In Suppressing Ca2+ Overload-Induced Parp1-Mediated Necrosis, Hui Wang-Heaton Dec 2016

A Novel Role Of Human Dna Damage Checkpoint Protein Atr In Suppressing Ca2+ Overload-Induced Parp1-Mediated Necrosis, Hui Wang-Heaton

Electronic Theses and Dissertations

Ataxia telangiectasia and Rad3-related (ATR) is well known for its regulatory role in DNA damage responses (DDR) as a checkpoint kinase that phosphorylates hundreds of protein substrates. However, its role in cellular non-DNA damage stress responses (NDDR) is unknown. Necrosis is one form of cell death and traditionally has been regarded as a passive and uncontrolled cell death. Recently, evidence has emerged to support the concept that necrosis also may occur in a programmed manner and that PARP1 can be a mediator. Active poly (ADP-ribose) polymerase 1 (PARP1) hydrolyzes nicotinamide adenine dinucleotide (NAD+) to produce poly (ADP-ribose) (PAR) polymers on ...


Characterization Of Sip470, A Family 1 Lipid Transfer Protein And Its Role In Plant Stress Signaling, Timothy Ndagi Audam Aug 2016

Characterization Of Sip470, A Family 1 Lipid Transfer Protein And Its Role In Plant Stress Signaling, Timothy Ndagi Audam

Electronic Theses and Dissertations

SIP470, a putative tobacco lipid transfer protein, was identified in a yeast two-hybrid screen to interact with SABP2. SABP2 is a critical role in SA-mediated signaling in tobacco and other plants. In vitro studies using purified recombinant SIP470 confirmed that it is a lipid binding protein. In an attempt to determine its role in mediating stress responses, Arabidopsis T-DNA insertion knockout lines lacking SIP470 homolog were used for the analysis. These mutant plants were defective in basal resistance against microbial pathogens. Expression of defense gene PR-1 was also delayed in these mutant plants. Interestingly, these mutant plants were not defective ...


Exploring The Relationship Between Behaviour And Neurochemistry In The Polyphenic Spider, Anelosimus Studiosus (Araneae: Theridiidae), Jennifer B. Price Aug 2016

Exploring The Relationship Between Behaviour And Neurochemistry In The Polyphenic Spider, Anelosimus Studiosus (Araneae: Theridiidae), Jennifer B. Price

Electronic Theses and Dissertations

The importance of social behaviour is evident in human society, but there are both costs and benefits associated with cooperation and sociality throughout the animal kingdom. At what point do the benefits outweigh the costs, and when do selective pressures favour sociality and colonization over solitude and independence? To investigate these questions, we have focused on an anomalous species of spider, Anelosimus studiosus, also known now as the northern social spider. Throughout its broad range, A. studiosus is solitary and aggressive, but recently, colonies of cooperative and social individuals have been observed at northern latitudes. This leads to two research ...


In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard May 2016

In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard

Undergraduate Honors Theses

Atherosclerosis, characterized by the build-up of cholesterol, immune cells and cellular debris within arterial walls, is accelerated following myocardial infarction by poorly understood mechanisms. Ubiquitin, a small, well-studied intracellular protein involved in protein turnover via the proteasome pathway, has recently been shown to exert extracellular effects on cardiac myocytes, in vitro, and in mice undergoing myocardial remodeling. This study investigates the potential role of extracellular ubiquitin in atherosclerosis by determining its effects on two critical atherosclerotic processes: the migration of vascular smooth muscles cells and the uptake of modified LDL by monocyte/macrophages in foam cell formation. In the presence ...


Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton May 2016

Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton

Electronic Theses and Dissertations

Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER ...


Characterization Of Sbip68: A Putative Tobacco Glucosyltransferase Protein And Its Role In Plant Defense Mechanisms, Abdulkareem O. Odesina Dec 2015

Characterization Of Sbip68: A Putative Tobacco Glucosyltransferase Protein And Its Role In Plant Defense Mechanisms, Abdulkareem O. Odesina

Electronic Theses and Dissertations

Plant secondary metabolites are essential for normal growth and development in plants ultimately affecting crop yield. They play roles ranging from appearance of the plants to defending against pathogen attack and herbivory. They have been used by humans for medicinal and recreational purposes amongst others. Glycosyltransferases catalyze the transfer of sugars from donor substrates to acceptors. Glucosyltransferases are a specific type of glycosyltransferases known to transfer glucose molecules from a glucose donor to a glucose acceptor (aglycone) producing the corresponding glucose secondary metabolite or glycone, in this case glucosides. It was hypothesized that SBIP68, a tobacco putative glucosyltransferase-like protein glucosylated ...


Venom Peptide Induced Inhibition Of Escherichia Coli Atp Synthase, Sofiya Azim May 2015

Venom Peptide Induced Inhibition Of Escherichia Coli Atp Synthase, Sofiya Azim

Undergraduate Honors Theses

ATP is the main cellular energy generated by the enzyme ATP synthase in almost all organisms from bacteria to vertebrates. While malfunction of the ATP synthase complex is responsible for several disease conditions, the enzyme itself can be used as a potent molecular drug target to combat many diseases including microbial infections, cancer, tuberculosis, and obesity. Recent widespread escalation of antibiotic resistant microbes in general and E. coli in particular demands novel alternative approaches to combat microbial infections. Inhibition of ATP synthase by inhibitors such as peptides is known to deprive microbes of required energy, resulting in microbial cell death ...


Redesign Of Trans-Splicing Molecules For The Correction Of Dystrophia Myotonica Type 1 Toxic Rna Transcripts, Eleanor G. Harrison Dec 2014

Redesign Of Trans-Splicing Molecules For The Correction Of Dystrophia Myotonica Type 1 Toxic Rna Transcripts, Eleanor G. Harrison

Undergraduate Honors Theses

Dystrophia myotonica (DM1), one of the most common forms of muscular dystrophy, is caused by a repeated trinucleotide expansion in the DMPK gene. This mutation results in the accumulation of toxic cellular RNA transcripts. Spliceosome-mediated RNA trans-splicing (SMaRT) technology is a form of gene therapy that possesses the potential to correct these toxic RNA transcripts and thus cure the disease. Despite its promise, prior research applications of SMaRT technology to DM1 have been hampered by poor efficiency and have not been validated in a relevant model of the disease. In order to improve the efficiency of trans-splicing, this study examined ...


A Comprehensive Study Of The Effects Of Neurotoxins On Noradrenergic Phenotypes, Neuronal Responses And Potential Intervention By Antidepressants In Noradrenergic Cells, Yan Wang Dec 2014

A Comprehensive Study Of The Effects Of Neurotoxins On Noradrenergic Phenotypes, Neuronal Responses And Potential Intervention By Antidepressants In Noradrenergic Cells, Yan Wang

Electronic Theses and Dissertations

It has been reported that locus coeruleus (LC) degeneration precedes the degeneration of other neurons in the brain in some neurodegenerative diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the precise mechanisms of neurodegeneration remain to be elucidated. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) has been widely used as a noradrenergic neurotoxin in the development of AD and PD animal models for specific LC degeneration. However, the precise mechanism of action of DSP4 remains unclear. An increased systemic DNA damage caused by neurotoxin or oxidative stress has been found to be related to the pathogenic development of neurodegeneration ...


Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean Dec 2014

Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean

Electronic Theses and Dissertations

Plants are in a perpetual evolutionary arms race with a wide range of pathogens. Their sessile nature has led plants to evolve defense mechanisms that can quickly recognize a unique stressor and deploy a resistance tailored for a specific attack. The salicylic acid (SA) mediated defense pathway has been shown to be one of the major defense tactics plants can initiate to defend themselves against microbial pathogens. Following a pathogen attack high levels of methyl salicylate (MeSA) are produced that can be converted to SA by the enzyme salicylic acid binding protein 2 (SABP2). A yeast two-hybrid screening was performed ...


Regulation Of C-Reactive Protein Gene Expression And Function, Avinash N. Thirumalai Dec 2014

Regulation Of C-Reactive Protein Gene Expression And Function, Avinash N. Thirumalai

Electronic Theses and Dissertations

Human C-reactive protein (CRP) is the prototypic acute phase protein whose serum concentration increases rapidly during inflammation. CRP is also associated with atherosclerosis; it is deposited at lesion sites where it may interact with modified lipoproteins. There are 2 major questions regarding CRP: 1. How is the serum concentration of CRP regulated? 2. What are the functions of CRP in atherosclerosis?

Our first aim was to determine the role of the constitutively expressed transcription factor Oct-1 in regulating CRP gene expression. We found that Oct-1 overexpression inhibited (IL-6+IL-1β)- induced CRP gene expression; maximal inhibition required the binding of Oct-1 ...


Characterization Of A Putative Sir2 Like Deacetylase And Its Role In Sabp2 Dependent Salicylic Acid Mediated Pathways In Plant, Md I. Haq Aug 2014

Characterization Of A Putative Sir2 Like Deacetylase And Its Role In Sabp2 Dependent Salicylic Acid Mediated Pathways In Plant, Md I. Haq

Electronic Theses and Dissertations

Salicylic Acid Binding Protein2 (SABP2) is an enzyme known to play important role in SA mediated pathway. SBIP-428 (SABP2 Interacting Protein-428), a SIR2 like deacetylase, has been found to interact with SABP2. We demonstrate that SBIP-428 functions as a Sirtuin deacetylase. We show that SBIP-428 itself is lysine acetylated. Interactions of a SBIP-428 with SABP2 also raised the possibility of SABP2 itself being lysine acetylated. The recombinant purified SABP2 or native partially purified SABP2 displayed no acetylation. In response to TMV infection, the expression of SBIP-428 was down regulated at 48 hpi. In addition, SBIP-428 was up regulated in plant ...


New Insights Into The Roles Of Human Dna Damage Checkpoint Protein Atr In The Regulation Of Nucleotide Excision Repair And Dna Damage-Induced Cell Death, Zhengke Li Dec 2013

New Insights Into The Roles Of Human Dna Damage Checkpoint Protein Atr In The Regulation Of Nucleotide Excision Repair And Dna Damage-Induced Cell Death, Zhengke Li

Electronic Theses and Dissertations

Integrity of the human genome is frequently threatened by endogenous and exogenous DNA damaging reagents that may lead to genome instability and cancer. Cells have evolved multiple mechanisms to repair DNA damage or to eliminate the damaged cells beyond repair and to prevent diverse diseases. Among these are ataxia telangiectasia and Rad3-related (ATR)-mediated DNA damage checkpoint and nucleotide excision repair (NER) that are the major pathways by which cells handle ultraviolet C (UV-C)- or other exogenous genotoxin-induced bulky DNA damage. However, it is unclear how these 2 pathways may be coordinated. In this study we show that ATR physically ...


Mechanisms Of The Anti-Pneumococcal Function Of C-Reactive Protein, Toh B. Gang Dec 2013

Mechanisms Of The Anti-Pneumococcal Function Of C-Reactive Protein, Toh B. Gang

Electronic Theses and Dissertations

Human C-reactive protein (CRP) increases survival of and decreases bacteremia in mice infected with Streptococcus pneumoniae. Such protection of mice against pneumococcal infection is seen only when CRP is administered into mice 6 hours before to 2 hours after the injection of pneumococci, but not when CRP is given to mice at a later time. Our first aim was to define the mechanism of CRP-mediated initial protection of mice against infection. It was proposed that CRP binds to phosphocholine (PCh) moieties present in the cell wall and activates the complement system on the pneumococcal surface that kills the pathogen. We ...


The Effects Of The Vitamin E Isomers Gamma Tocopherol And Gamma Tocotrienol On The Nfkb Pathway In The Pc-3 Cell Line., Brittney Rudder May 2011

The Effects Of The Vitamin E Isomers Gamma Tocopherol And Gamma Tocotrienol On The Nfkb Pathway In The Pc-3 Cell Line., Brittney Rudder

Undergraduate Honors Theses

Regions along the Mediterranean and Southern Asia have lower prostate cancer incidence compared to the rest of the world. It has been hypothesized that one of the potential contributing factors for this low incidence includes a higher intake of vitamin E (tocopherols and tocotrienols). This study examines the potential of gamma tocopherol (GT) and gamma tocotrienol (GT3) to reduce prostate cancer proliferation by examining their effects on the NFκB pathway. NFκB is known to inhibit apoptosis in cancer cells. Our data shows that both GT and GT3 are capable of down regulation of NFκB precursors and up regulation of Caspase ...


Effects Of Vitamin E Isomer, Gamma Tocotrienol (Gt3), At Inhibiting Cell Growth And Inducing Apoptosis In Colon Cancer Cell Line Hct-116., Havya Dave May 2011

Effects Of Vitamin E Isomer, Gamma Tocotrienol (Gt3), At Inhibiting Cell Growth And Inducing Apoptosis In Colon Cancer Cell Line Hct-116., Havya Dave

Undergraduate Honors Theses

Colorectal cancer is the third most prominent cancer world-wide and it is the second leading cause of cancer deaths in the United States. Many dietary components affect the risk of developing colorectal cancer, such as Vitamin E. Of the eight isomers of Vitamin E, four have a tocotrienol structure. Tocotrienols are found at highest concentrations in palm oil, which is ingested more in areas of Asia where the incidence of colorectal cancer is the lowest, suggesting a role of tocotrienols in the prevention of colorectal cancer. The metabolism of Arachidonic acid pathway produces a host of pro-inflammatory metabolites either by ...


The Effect Of Ultraviolet Light On Cell Viability, Dna Damage And Repair In Hutchinson-Gilford Progeria Syndrome And Bj Fibroblasts., Mckayla Johnson May 2011

The Effect Of Ultraviolet Light On Cell Viability, Dna Damage And Repair In Hutchinson-Gilford Progeria Syndrome And Bj Fibroblasts., Mckayla Johnson

Undergraduate Honors Theses

Patients of Hutchinson-Gilford Progeria Syndrome (HGPS) display a rate of aging up to ten times that of normal human populations. It might be expected that HGPS cells would have a decreased ability to repair DNA damage through the cell cycle as compared to normal cells such as those of the BJ cell line since DNA damage accumulation is a hallmark phenotype of aging. On earth, we are exposed to far more ultraviolet-B (UV-B, 280-315 nm) and UV-A (315-400 nm) than UV-C (100-280 nm) radiation, since the latter is filtered-out by the atmospheric ozone layer. The relative sensitivity of prematurely aging ...


Molecular Modulation Of A-Subunit Visit-Dg Sequence Residue Asp-350 In The Catalytic Sites Of Escherichia Coli Atp Synthase., Sneha R. Jonnalagadda May 2011

Molecular Modulation Of A-Subunit Visit-Dg Sequence Residue Asp-350 In The Catalytic Sites Of Escherichia Coli Atp Synthase., Sneha R. Jonnalagadda

Electronic Theses and Dissertations

ATP Synthase is the fundamental means of cellular energy production in animals, plants, and almost all microorganisms. In order to understand the mechanism of ATP catalysis, critical amino acid residues involved in Pi binding have to be identified. The αVISIT-DG sequence at the interface of α/β subunits that contains residues from 345-351 is highly conserved and αAsp-350 has been chosen because of its negative charge side chain and its close proximity (~2.8 Å) to the known phosphate binding residue αArg-376. The mutant's αD350R, αD350Q, αD350A, αR376A/D, and αG351R/A/D were generated by site directed mutagenesis ...


Characterization Of Heat Shock Protein A12b As A Novel Angiogenesis Regulator., Rebecca J. Steagall Aug 2008

Characterization Of Heat Shock Protein A12b As A Novel Angiogenesis Regulator., Rebecca J. Steagall

Electronic Theses and Dissertations

Previously, we cloned Heat shock protein A12B (HspA12B), the newest member of a recently defined subfamily of proteins distantly related to the Hsp70 family that are enriched in atherosclerotic lesions. We have found that HspA12B is predominantly expressed in vascular endothelium, and that it is involved in angiogenesis which we probed by in vitro angiogenesis assays (Matrigel), migration assays and Directed In Vivo Angiogenesis Assay (DIVAA). Hsp70s are molecular chaperones that are inducible by stress and have been found to be anti-apoptotic (Li et al. 2000; Nylandsted et al. 2000; Garrido et al. 2001). Because of its homology to Hsp70 ...


Structural And Biochemical Investigation Of The Molecular Mechanisms Of Dna Response And Repair In Humans And Escherichia Coli., Steven Michael Shell May 2008

Structural And Biochemical Investigation Of The Molecular Mechanisms Of Dna Response And Repair In Humans And Escherichia Coli., Steven Michael Shell

Electronic Theses and Dissertations

The genomes of all living cells are under constant attack from both endogenous and exogenous agents that damage DNA. In order to maintain genetic integrity a variety of response pathways have evolved to recognize and eliminate DNA damage. Replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, is a required factor for all major DNA metabolisms. Although much work has been done to elucidate the nature of the interaction between RPA and ssDNA currently there is no structural information on how the full-length protein binds to ssDNA. This study presents a novel examination of the full nucleoprotein complex ...


Examination Of Microsporidia Spore Adherence And Host Cell Infection In Vitro., Timothy Robert Southern May 2007

Examination Of Microsporidia Spore Adherence And Host Cell Infection In Vitro., Timothy Robert Southern

Electronic Theses and Dissertations

Microsporidia are obligate intracellular pathogens that cause severe disease in immunocompromised humans. While albendazole is the treatment of choice, no therapy exists that effectively treats all forms or causes of human microsporidiosis. Recent studies show that the microsporidian Encephalitozoon intestinalis binds glycosaminoglycans (GAGs) associated with the host cell surface, and that the divalent cations manganese (Mn2+) and magnesium (Mg2+) augment spore adherence to host cells by activating a constituent on the spore surface. These studies also illustrate a direct relationship between spore adherence and host cell infection; inhibition of spore adherence leads to reduced host cell infection while ...


In Vitro Assessment Of The Toxicity Of Cocaine And Its Metabolites In The Human Umbilical Artery, Tessa L. Long Aug 1998

In Vitro Assessment Of The Toxicity Of Cocaine And Its Metabolites In The Human Umbilical Artery, Tessa L. Long

Electronic Theses and Dissertations

An in vitro model was used to assess the effect of cocaine and its metabolites on the umbilical artery. Objectives were to pharmacologically confirm the presence of adrenergic innervation using tyramine, evaluate the ability of cocaine, benzoylecgonine, norcocaine and cocaethylene to potentiate vasoconstriction by serotonin and norepinephrine, examine the ability of ketanserin to block the enhanced vasoconstriction produced by cocaine, and determine displacement of 3 H-ketanserin by serotonin, norepinephrine, tyramine and mianserin. The vasoconstrictive effect of tyramine (100 μM) was enhanced in the presence of cocaine by 257%. Vasoconstrictive effects of serotonin and norepinephrine were significantly enhanced by cocaine by ...


The Influence Of A Human Repetitive Dna On Genome Stability, Eugenia L. Posey May 1998

The Influence Of A Human Repetitive Dna On Genome Stability, Eugenia L. Posey

Electronic Theses and Dissertations

A uniquely human interspersed repetitive DNA sequence family, the L2Hs, are highly polymorphic in human genomes. Several features of interspersed repeated DNA may contribute to the instability observed. Certain motifs (direct repeats, palindromes, and inverted repeats) comprising L2Hs elements may adopt unusual secondary structures such as cruciforms or hairpins. These motifs have been associated with features of genome instability in recombination, insertions and deletions. The L2Hs elements also are AT-rich (76%) compared to the bulk of human DNA (52%). That their dynamic nature (i.e. polymorphisms) may arise from recombination, insertions and deletions has led to the hypothesis that the ...


Endogenous Alkylglycerol Functions As A Mediator Of Protein Kinase C Activity And Cell Proliferation, Fritz G. Buchanan May 1997

Endogenous Alkylglycerol Functions As A Mediator Of Protein Kinase C Activity And Cell Proliferation, Fritz G. Buchanan

Electronic Theses and Dissertations

To explore the possibility that 1-O-alkyl-sn-glycerol (alkylglycerol) may serve a regulatory role in the control of cell proliferation or PKC activity, we examined the ability of alkylglycerol to influence PKC activity and subcellular distribution as well as the ability of alkylglycerol to effect cell proliferation. MDCK cells grown to confluence show a loss of PKC activity associated with the membrane, as reported in fibroblasts. Preconfluent cultures of MDCK cells have a high level of PKC activity associated with the membrane. However, treatment of preconfluent cultures with alkylglycerol causes a reduction of PKC activity. A similar inhibition was observed with alkylglycerol ...


Moraxella (Branhamella) Catarrhalis: A Molecular Epidemiology Study, Lyndell R. Gill May 1995

Moraxella (Branhamella) Catarrhalis: A Molecular Epidemiology Study, Lyndell R. Gill

Electronic Theses and Dissertations

Moraxella (Branhamella) catarrhalis is the third-most-frequently isolated microorganism associated with acute exacerbations of chronic bronchitis in patients during their stay at the Mountain Home VA Medical Center (MHVAMC). In order to develop a practical, epidemiologically-meaningful typing method for M. (B.) catarrhalis, we tested two methods based on analysis of chromosomal DNA for typeability, reproducibility, and ability to differentiate between unrelated strains (discriminatory power, D). M. (B.) catarrhalis isolants from MHVAMC from 7/1/87-6/30/88 were grown overnight in broth and embedded in agarose. DNA was isolated by standard methods. The DNA was subjected to: (1) restriction endonuclease digestion ...


Unusual Structure Of A Human Middle Repetitive Dna, Duminda D. Ratnasinghe Dec 1993

Unusual Structure Of A Human Middle Repetitive Dna, Duminda D. Ratnasinghe

Electronic Theses and Dissertations

The L2Hs sequences are a polymorphic, interspersed, middle repetitive DNA family unique to human genomes. Genomic fingerprinting indicates that these DNAs vary from one individual to another and between tissues of the same individual. Sequence analysis reveals that they are AT-rich (76%) and contain many unusual sequence arrangements (palindromes, inverted and direct repeats). These sequence properties confer on the L2Hs elements the potential to fold into non-B-form structures, a characteristic of recombination hot spots. To test this hypothesis carbodiimide, osmium tetroxide and S$\sb1$ nuclease were used as single-strand specific probes to study a recombinant plasmid, pN6.4.39, containing ...


A Molecular Basis For Erythromycin Sensitivity And Resistance In Escherichia Coli, Harold S. Chittum Dec 1993

A Molecular Basis For Erythromycin Sensitivity And Resistance In Escherichia Coli, Harold S. Chittum

Electronic Theses and Dissertations

The effect of erythromycin on the 50S ribosomal subunit during cell growth has been extensively investigated. Sucrose density gradient analysis of ribosomes formed in the presence and absence of the drug revealed a 50S specific assembly defect is partially responsible for erythromycin's inhibitory effects on wild type cells. Examination of two erythromycin-resistant mutants of E. coli (N281 and N282) revealed that mutant N281 (L22 mutant) but not N282 (L4 mutant) was assembly defective in the presence of the drug, although only at much higher drug concentrations (300 ug/ml vs. 75 ug/ml for wild type cells). The altered ...