Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular Biology

Regulation Of The Fgf/Erk Signaling Pathway: Roles In Zebrafish Gametogenesis And Embryogenesis, Jennifer M. Maurer Oct 2017

Regulation Of The Fgf/Erk Signaling Pathway: Roles In Zebrafish Gametogenesis And Embryogenesis, Jennifer M. Maurer

GSBS Dissertations and Theses

Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are ...


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

UT GSBS Dissertations and Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo.

In ...


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and ...


Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu Feb 2017

Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu

All Dissertations, Theses, and Capstone Projects

Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3’ UTR sequences stabilize GFP mRNAs relative to those with SV40 3’ UTR sequences, although the 3’UTR of H2A.Z does not determine the spatial distribution of H2A.Z ...


Histone Variant Macroh2a In The Gut And Beyond: A Study Of Intestinal Fortitude, Ryan James Cedeno Jan 2017

Histone Variant Macroh2a In The Gut And Beyond: A Study Of Intestinal Fortitude, Ryan James Cedeno

Publicly Accessible Penn Dissertations

Epigenetic factors guide chromatin remodeling during cell state transitions and confer resistance to genotoxic stressors that could induce deleterious transformations. A particularly peculiar component of the epigenome with emerging roles in fine-tuning cell identity and upholding genomic stability is the structural histone variant macroH2A. Relatively little is currently known about macroH2A’s influence on overall cell developmental potency and less still is known about macroH2A’s contributions to adult stem cell identity and function in vivo. In this work, we use induced pluripotent stem cell (iPSC) reprogramming and the murine intestinal stem cell (ISC) system to model macroH2A’s overall ...


Characterizing A Signaling Network That Maintains Hematopoietic Stem Cells, Michelle Nguyen-Mccarty Jan 2017

Characterizing A Signaling Network That Maintains Hematopoietic Stem Cells, Michelle Nguyen-Mccarty

Publicly Accessible Penn Dissertations

Hematopoietic stem cells (HSCs) are able to self-renew and to differentiate into all blood cells. HSCs reside in a low-perfusion niche and depend on local signals to survive and to maintain the capacity for self-renewal. HSCs removed from the niche can survive if they receive hematopoietic cytokines, but they then lose the ability to self-renew. However, we showed previously that simultaneous inhibition of glycogen synthase kinase-3 (GSK-3) and mammalian target of rapamycin complex 1 (mTORC1) maintains HSC function ex vivo without the need for exogenous cytokines. As these experiments were initially done in heterogeneous cell populations, I then showed that ...


Elucidating The Ligand-Specific Role Of Tetraspanin12 As An Essential Co-Activator In Norrin/Frizzled4 Signaling And Retinal Vascularization, Maria B. Lai Jan 2017

Elucidating The Ligand-Specific Role Of Tetraspanin12 As An Essential Co-Activator In Norrin/Frizzled4 Signaling And Retinal Vascularization, Maria B. Lai

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

Genetic evidence indicates that specific combinations of accessory proteins and ligands mediate vascular Frizzled (FZD) signaling via beta-catenin in different CNS structures. Accessory proteins in FZD receptor complexes are thought to determine ligand-selectivity and signaling amplitude. In the retina, TSPAN12 is an essential co-activator in Norrin/FZD4 signaling to mediate angiogenesis. The genes encoding mediators of Norrin/FZD4 signaling are linked to familial exudative vitreoretinopathy (FEVR), an inherited retinal disease that can lead to blindness. Yet, the molecular function of TSPAN12 and the specific cell type in which TSPAN12 functions in the retina remains poorly understood. Here, I utilized binding ...


Insights Into Retinal Cell Fate Determination In Vertebrates Using Transcriptomic Profiling And Genome Editing, Rebecca Chowdhury Jan 2017

Insights Into Retinal Cell Fate Determination In Vertebrates Using Transcriptomic Profiling And Genome Editing, Rebecca Chowdhury

Graduate Theses and Dissertations

Deciphering the mechanisms of development of retinal neurons is not only of immense interest to developmental biologists, but is also vital for regenerative therapeutic applications. To attain this goal, it is critical to understand how specific intrinsic factors control cell fate decisions and neuronal maturation processes. In the retina, Atoh7 is a highly conserved transcription factor that is essential for retinal ganglion cell development in the developing mouse and zebrafish. Atoh7 labels a subset of cells in the developing retina that are progressing from a progenitor to a differentiated state. To capture cells during the window when the cell fate ...


Studies On The Molecular Underpinnings Of Sex Determination Mechanism Evolution And Molecular Sexing Tools In Turtles, Robert Alan Literman Jan 2017

Studies On The Molecular Underpinnings Of Sex Determination Mechanism Evolution And Molecular Sexing Tools In Turtles, Robert Alan Literman

Graduate Theses and Dissertations

Sex determination mechanisms (SDMs) direct the development of individuals towards a male or female fate, and in vertebrates they are typically controlled by an individual’s genotypic content (genotypic sex determination, GSD) or through an environmental cue experienced during development, mainly temperature (temperature-dependent sex determination, TSD). Among vertebrates, SDMs are surprisingly labile, transitioning between different forms of TSD and GSD in some lineages more than others. Turtles represent a model clade to study SDM evolution, as multiple independent transitions between TSD and GSD have occurred throughout their evolution and a growing number of genomic datasets have become available.

This dissertation ...