Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

University of Kentucky

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 41

Full-Text Articles in Molecular Biology

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich Dec 2021

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich

Center for Muscle Biology Faculty Publications

There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle …


An Empirical Pipeline For Personalized Diagnosis Of Lafora Disease Mutations, M. Kathryn Brewer, Maria Machio-Castello, Rosa Viana, Jeremiah L. Wayne, Andrea Kuchtová, Zoe R. Simmons, Sarah Sternbach, Sheng Li, Maria Adelaida García-Gimeno, Jose M. Serratosa, Pascual Sanz, Craig W. Vander Kooi, Matthew S. Gentry Oct 2021

An Empirical Pipeline For Personalized Diagnosis Of Lafora Disease Mutations, M. Kathryn Brewer, Maria Machio-Castello, Rosa Viana, Jeremiah L. Wayne, Andrea Kuchtová, Zoe R. Simmons, Sarah Sternbach, Sheng Li, Maria Adelaida García-Gimeno, Jose M. Serratosa, Pascual Sanz, Craig W. Vander Kooi, Matthew S. Gentry

Molecular and Cellular Biochemistry Faculty Publications

Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical …


Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei Jul 2021

Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei

Mathematics Faculty Publications

While automated feature extraction has had tremendous success in many deep learning algorithms for image analysis and natural language processing, it does not work well for data involving complex internal structures, such as molecules. Data representations via advanced mathematics, including algebraic topology, differential geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, their performance is often dependent on manual parametrization. This work introduces the auto-parametrized weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious parametrization process while also being a suitable technique for automated feature extraction on these internally complex …


Algebraic Graph-Assisted Bidirectional Transformers For Molecular Property Prediction, Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan Jun 2021

Algebraic Graph-Assisted Bidirectional Transformers For Molecular Property Prediction, Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan

Mathematics Faculty Publications

The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as …


Toward The Discovery Of Biological Functions Associated With The Mechanosensor Mtl1p Of Saccharomyces Cerevisiae Via Integrative Multi-Omics Analysis, Nelson Martínez-Matías, Nataliya Chorna, Sahily González-Crespo, Lilliam Villanueva, Ingrid Montes-Rodríguez, Loyda M. Melendez-Aponte, Abiel Roche-Lima, Kelvin Carrasquillo-Carrión, Ednalise Santiago-Cartagena, Brian C. Rymond, Mohan Babu, Igor Stagljar, José R. Rodríguez-Medina Apr 2021

Toward The Discovery Of Biological Functions Associated With The Mechanosensor Mtl1p Of Saccharomyces Cerevisiae Via Integrative Multi-Omics Analysis, Nelson Martínez-Matías, Nataliya Chorna, Sahily González-Crespo, Lilliam Villanueva, Ingrid Montes-Rodríguez, Loyda M. Melendez-Aponte, Abiel Roche-Lima, Kelvin Carrasquillo-Carrión, Ednalise Santiago-Cartagena, Brian C. Rymond, Mohan Babu, Igor Stagljar, José R. Rodríguez-Medina

Biology Faculty Publications

Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased …


Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica Sep 2020

Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases.

METHODS: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected …


Gamete Nuclear Migration In Animals And Plants, Umma Fatema, Mohammad F. Ali, Zheng Hu, Anthony J. Clark, Tomokazu Kawashima Apr 2019

Gamete Nuclear Migration In Animals And Plants, Umma Fatema, Mohammad F. Ali, Zheng Hu, Anthony J. Clark, Tomokazu Kawashima

Plant and Soil Sciences Faculty Publications

The migration of male and female gamete nuclei to each other in the fertilized egg is a prerequisite for the blending of genetic materials and the initiation of the next generation. Interestingly, many differences have been found in the mechanism of gamete nuclear movement among animals and plants. Female to male gamete nuclear movement in animals and brown algae relies on microtubules. By contrast, in flowering plants, the male gamete nucleus is carried to the female gamete nucleus by the filamentous actin cytoskeleton. As techniques have developed from light, electron, fluorescence, immunofluorescence, and confocal microscopy to live-cell time-lapse imaging using …


Transcriptional Regulation Factors Of The Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (Slc25a13): Usf1 As Basal Factor And Foxa2 As Activator In Liver Cells, Paolo Convertini, Simona Todisco, Francesco De Santis, Ilaria Pappalardo, Dominga Iacobazzi, Maria Antonietta Castiglione Morelli, Yvonne N. Fondufe-Mittendorf, Giuseppe Martelli, Ferdinando Palmieri, Vittoria Infantino Apr 2019

Transcriptional Regulation Factors Of The Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (Slc25a13): Usf1 As Basal Factor And Foxa2 As Activator In Liver Cells, Paolo Convertini, Simona Todisco, Francesco De Santis, Ilaria Pappalardo, Dominga Iacobazzi, Maria Antonietta Castiglione Morelli, Yvonne N. Fondufe-Mittendorf, Giuseppe Martelli, Ferdinando Palmieri, Vittoria Infantino

Molecular and Cellular Biochemistry Faculty Publications

Mitochondrial carriers catalyse the translocation of numerous metabolites across the inner mitochondrial membrane, playing a key role in different cell functions. For this reason, mitochondrial carrier gene expression needs tight regulation. The human SLC25A13 gene, encoding for the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), catalyses the electrogenic exchange of aspartate for glutamate plus a proton, thus taking part in many metabolic processes including the malate-aspartate shuttle. By the luciferase (LUC) activity of promoter deletion constructs we identified the putative promoter region, comprising the proximal promoter (−442 bp/−19 bp), as well as an enhancer region (−968 bp/−768 bp). Furthermore, with different …


Rna Sequencing, Selection Of Reference Genes And Demonstration Of Feeding Rnai In Thrips Tabaci (Lind.) (Thysanoptera: Thripidae), Satnam Singh, Mridula Gupta, Suneet Pandher, Gurmeet Kaur, Neha Goel, Pankaj Rathore, Subba Reddy Palli Feb 2019

Rna Sequencing, Selection Of Reference Genes And Demonstration Of Feeding Rnai In Thrips Tabaci (Lind.) (Thysanoptera: Thripidae), Satnam Singh, Mridula Gupta, Suneet Pandher, Gurmeet Kaur, Neha Goel, Pankaj Rathore, Subba Reddy Palli

Entomology Faculty Publications

Background: Thrips tabaci is a severe pest of onion and cotton. Due to lack of information on its genome or transcriptome, not much is known about this insect at the molecular level. To initiate molecular studies in this insect, RNA was sequenced; de novo transcriptome assembly and analysis were performed. The RNAseq data was used to identify reference and RNAi pathway genes in this insect. Additionally, feeding RNAi was demonstrated in T. tabaci for the first time.

Results: From the assembled transcriptome, 27,836 coding sequence (CDS) with an average size of 1236 bp per CDS were identified. About 85.4% of …


Itch Nuclear Translocation And H1.2 Polyubiquitination Negatively Regulate The Dna Damage Response, Lufen Chang, Lei Shen, Hu Zhou, Jing Gao, Hangyi Pan, Li Zheng, Brian Armstrong, Yang Peng, Guang Peng, Binhua P. Zhou, Steven T. Rosen, Binghui Shen Jan 2019

Itch Nuclear Translocation And H1.2 Polyubiquitination Negatively Regulate The Dna Damage Response, Lufen Chang, Lei Shen, Hu Zhou, Jing Gao, Hangyi Pan, Li Zheng, Brian Armstrong, Yang Peng, Guang Peng, Binhua P. Zhou, Steven T. Rosen, Binghui Shen

Molecular and Cellular Biochemistry Faculty Publications

The downregulation of the DNA damage response (DDR) enables aggressive tumors to achieve uncontrolled proliferation against replication stress, but the mechanisms underlying this process in tumors are relatively complex. Here, we demonstrate a mechanism through which a distinct E3 ubiquitin ligase, ITCH, modulates DDR machinery in triple-negative breast cancer (TNBC). We found that expression of a nuclear form of ITCH was significantly increased in human TNBC cell lines and tumor specimens. Phosphorylation of ITCH at Ser257 by AKT led to the nuclear localization of ITCH and ubiquitination of H1.2. The ITCH-mediated polyubiquitination of H1.2 suppressed RNF8/RNF168-dependent formation of 53BP1 foci, …


Agronomic And Chemical Performance Of Field-Grown Tobacco Engineered For Triterpene And Methylated Triterpene Metabolism, Zuodong Jiang, Chase Kempinski, Santosh Kumar, Scott Kinison, Kristin Linscott, Eric Nybo, Sarah Janze, Constance Wood, Joseph Chappell Jun 2018

Agronomic And Chemical Performance Of Field-Grown Tobacco Engineered For Triterpene And Methylated Triterpene Metabolism, Zuodong Jiang, Chase Kempinski, Santosh Kumar, Scott Kinison, Kristin Linscott, Eric Nybo, Sarah Janze, Constance Wood, Joseph Chappell

Pharmaceutical Sciences Faculty Publications

Squalene is a linear intermediate to nearly all classes of triterpenes and sterols and is itself highly valued for its use in wide range of industrial applications. Another unique linear triterpene is botryococcene and its methylated derivatives generated by the alga Botryococcus braunii race B, which are progenitors to fossil fuel deposits. Production of these linear triterpenes was previously engineered into transgenic tobacco by introducing the key steps of triterpene metabolism into the particular subcellular compartments. In this study, the agronomic characteristics (height, biomass accumulation, leaf area), the photosynthetic capacity (photosynthesis rate, conductance, internal CO2 levels) and triterpene content …


Cloning And Characterization Of A Pyrethroid Pesticide Decomposing Esterase Gene, Est3385, From Rhodopseudomonas Palustris Psb-S, Xiangwen Luo, Deyong Zhang, Xuguo Zhou, Jiao Du, Songbai Zhang, Yong Liu May 2018

Cloning And Characterization Of A Pyrethroid Pesticide Decomposing Esterase Gene, Est3385, From Rhodopseudomonas Palustris Psb-S, Xiangwen Luo, Deyong Zhang, Xuguo Zhou, Jiao Du, Songbai Zhang, Yong Liu

Entomology Faculty Publications

Full length open reading frame of pyrethroid detoxification gene, Est3385, contains 963 nucleotides. This gene was identified and cloned based on the genome sequence of Rhodopseudomonas palustris PSB-S available at the GneBank. The predicted amino acid sequence of Est3385 shared moderate identities (30–46%) with the known homologous esterases. Phylogenetic analysis revealed that Est3385 was a member in the esterase family I. Recombinant Est3385 was heterologous expressed in E. coli, purified and characterized for its substrate specificity, kinetics and stability under various conditions. The optimal temperature and pH for Est3385 were 35 °C and 6.0, respectively. This enzyme could …


Abcg5 And Abcg8: More Than A Defense Against Xenosterols, Shailendra B. Patel, Gregory A. Graf, Ryan E. Temel May 2018

Abcg5 And Abcg8: More Than A Defense Against Xenosterols, Shailendra B. Patel, Gregory A. Graf, Ryan E. Temel

Pharmaceutical Sciences Faculty Publications

The elucidation of the molecular basis of the rare disease, sitosterolemia, has revolutionized our mechanistic understanding of how dietary sterols are excreted and how cholesterol is eliminated from the body. Two proteins, ABCG5 and ABCG8, encoded by the sitosterolemia locus, work as obligate dimers to pump sterols out of hepatocytes and enterocytes. ABCG5/ABCG8 are key in regulating whole-body sterol trafficking, by eliminating sterols via the biliary tree as well as the intestinal tract. Importantly, these transporters keep xenosterols from accumulating in the body. The sitosterolemia locus has been genetically associated with lipid levels and downstream atherosclerotic disease, as well as …


Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu Apr 2018

Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu

Chemistry Faculty Publications

The role of electrostatic interactions in the viral capsid assembly process was studied by comparing the assembly process of a truncated hepatitis B virus capsid protein Cp149 with its mutant protein D2N/D4N, which has the same conformational structure but four fewer charges per dimer. The capsid protein self-assembly was investigated under a wide range of protein surface charge densities by changing the protein concentration, buffer pH, and solution ionic strength. Lowering the protein charge density favored the capsid formation. However, lowering charge beyond a certain point resulted in capsid aggregation and precipitation. Interestingly, both the wild-type and D2N/D4N mutant displayed …


Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich Mar 2018

Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich

Physiology Faculty Publications

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, …


Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou Mar 2018

Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou

Urology Faculty Publications

The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our …


Contractile Response Of Bovine Lateral Saphenous Vein To Ergotamine Tartrate Exposed To Different Concentrations Of Molecularly Imprinted Polymer, Manoj B. Kudupoje, James L. Klotz, Alexandros Yiannikouris, Karl A. Dawson, Kyle R. Mcleod, Eric S. Vanzant Feb 2018

Contractile Response Of Bovine Lateral Saphenous Vein To Ergotamine Tartrate Exposed To Different Concentrations Of Molecularly Imprinted Polymer, Manoj B. Kudupoje, James L. Klotz, Alexandros Yiannikouris, Karl A. Dawson, Kyle R. Mcleod, Eric S. Vanzant

Animal and Food Sciences Faculty Publications

Ergot alkaloids, in their active isomeric form, affect animal health and performance, and adsorbents are used to mitigate toxicities by reducing bioavailability. Adsorbents with high specificity (molecularly imprinted polymers: MIP) adsorb ergot alkaloids in vitro, but require evaluation for biological implications. Using ex vivo myography, synthetic polymers were evaluated for effects on the bioactivity of ergotamine tartrate (ETA). Polymers were first evaluated using isotherms. Lateral saphenous veins were collected from 17 steers for four independent studies: dose response of ETA, adsorbent dose response, validation of pre-myograph incubation conditions and MIP/ non-molecularly imprinted polymer (NIP) comparison. Norepinephrine normalized percent contractile response …


Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak Sep 2017

Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak

Pharmaceutical Sciences Faculty Publications

Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida. The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B). While dTDP-β-L-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for …


Changes In Alternative Splicing As Pharmacodynamic Markers For Sudemycin D6, Morgan Thurman, Jacob Van Doorn, Barbara Danzer, Thomas R. Webb, Stefan Stamm Sep 2017

Changes In Alternative Splicing As Pharmacodynamic Markers For Sudemycin D6, Morgan Thurman, Jacob Van Doorn, Barbara Danzer, Thomas R. Webb, Stefan Stamm

Molecular and Cellular Biochemistry Faculty Publications

Objective:

The aim of the study was to define pharmacodynamic markers for sudemycin D6, an experimental cancer drug that changes alternative splicing in human blood.

Methods:

Blood samples from 12 donors were incubated with sudemycin D6 for up to 24 hours, and at several time points total RNA from lymphocytes was prepared and the pre-messenger RNA (mRNA) splicing patterns were analyzed with reverse transcription-polymerase chain reaction.

Results:

Similar to immortalized cells, blood lymphocytes change alternative splicing due to sudemycin D6 treatment. However, lymphocytes in blood respond slower than immortalized cultured cells.

Conclusions:

Exon skipping in the DUSP11 and SRRM1 pre-mRNAs …


Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards Jul 2017

Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards

Chemistry Faculty Publications

The measurement of biological events on the surface of live cells at the single-molecule level is complicated by several factors including high protein densities that are incompatible with single-molecule imaging, cellular autofluorescence, and protein mobility on the cell surface. Here, we fabricated a device composed of an array of nanoscale apertures coupled with a microfluidic delivery system to quantify single-ligand interactions with proteins on the cell surface. We cultured live cells directly on the device and isolated individual epidermal growth factor receptors (EGFRs) in the apertures while delivering fluorescently labeled epidermal growth factor. We observed single ligands binding to EGFRs, …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


Discovery Of A Diaminopyrimidine Flt3 Inhibitor Active Against Acute Myeloid Leukemia, Jamie A. Jarusiewicz, Jae Yoon Jeon, Michele C. Connelly, Yizhe Chen, Lei Yang, Sharyn D. Baker, R. Kiplin Guy May 2017

Discovery Of A Diaminopyrimidine Flt3 Inhibitor Active Against Acute Myeloid Leukemia, Jamie A. Jarusiewicz, Jae Yoon Jeon, Michele C. Connelly, Yizhe Chen, Lei Yang, Sharyn D. Baker, R. Kiplin Guy

Pharmaceutical Sciences Faculty Publications

Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure–activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development.


Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski Apr 2017

Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski

Toxicology and Cancer Biology Faculty Publications

Ultraviolet light (UV) is an inducer of reactive oxygen species (ROS) as well as 6-4-photoproducts and cyclobutane pyrimidine dimers (CPD) in the skin, which further cause damage to the skin cells. Irradiation of cultured human melanocytes with UVB stimulated ROS production, which was reduced in cells treated with melatonin or its metabolites: 6-hydroxymelatonin (6-OHM), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetylserotonin (NAS), and 5-methoxytryptamine (5-MT). Melatonin and its derivatives also stimulated the expression of NRF2 (nuclear factor erythroid 2 [NF-E2]-related factor 2) and its target enzymes and proteins that play an important role in cell protection from different damaging factors including UVB. Silencing …


The Mirnaome Of Catharanthus Roseus: Identification, Expression Analysis, And Potential Roles Of Micrornas In Regulation Of Terpenoid Indole Alkaloid Biosynthesis, Ethan M. Shen, Sanjay Kumar Singh, Jayadri S. Ghosh, Barunava Patra, Priyanka Paul, Ling Yuan, Sitakanta Pattanaik Feb 2017

The Mirnaome Of Catharanthus Roseus: Identification, Expression Analysis, And Potential Roles Of Micrornas In Regulation Of Terpenoid Indole Alkaloid Biosynthesis, Ethan M. Shen, Sanjay Kumar Singh, Jayadri S. Ghosh, Barunava Patra, Priyanka Paul, Ling Yuan, Sitakanta Pattanaik

Plant and Soil Sciences Faculty Publications

MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro-miRNAs) in C. roseus seedlings. Genome-wide expression analysis revealed that a set of cro-miRNAs are differentially regulated in response to methyl jasmonate (MeJA). In silico target prediction identified 519 potential cro-miRNA targets that include several auxin response factors (ARFs). The presence of cleaved transcripts of miRNA-targeted ARFs in C. roseus …


Dual-Functional-Tag-Facilitated Protein Labeling And Immobilization, Xinyi Zhang, Wei Lu, Kevin Kwan, Dibakar Bhattacharyya, Yinan Wei Feb 2017

Dual-Functional-Tag-Facilitated Protein Labeling And Immobilization, Xinyi Zhang, Wei Lu, Kevin Kwan, Dibakar Bhattacharyya, Yinan Wei

Chemistry Faculty Publications

An important strategy in the construction of biomimetic membranes and devices is to use natural proteins as the functional components for incorporation in a polymeric or nanocomposite matrix. Toward this goal, an important step is to immobilize proteins with high efficiency and precision without disrupting the protein function. Here, we developed a dual-functional tag containing histidine and the non-natural amino acid azidohomoalanine (AHA). AHA is metabolically incorporated into the protein, taking advantage of the Met-tRNA and Met-tRNA synthetase. Histidine in the tag can facilitate metal-affinity purification, whereas AHA can react with an alkyne-functionalized probe or surface via well-established click chemistry. …


Progesterone Receptor And Prostaglandins Mediate Luteinizing Hormone-Induced Changes In Messenger Rnas For Adamts Proteases In Theca Cells Of Bovine Periovulatory Follicles, Erin L. Willis, Phillip J. Bridges, Joanne E. Fortune Jan 2017

Progesterone Receptor And Prostaglandins Mediate Luteinizing Hormone-Induced Changes In Messenger Rnas For Adamts Proteases In Theca Cells Of Bovine Periovulatory Follicles, Erin L. Willis, Phillip J. Bridges, Joanne E. Fortune

Animal and Food Sciences Faculty Publications

Little is known about the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of extracellular proteases in ovarian follicles of non‐rodent species, particularly in theca cells. In the present study, temporal changes in the abundance of mRNA encoding four ADAMTS subtypes and hormonal regulation of mRNA encoding two subtypes were investigated in theca interna cells during the periovulatory period in cattle. Gonadotropin‐releasing hormone (GnRH) was injected into animals to induce a luteinizing hormone (LH)/follicle‐stimulating hormone (FSH) surge, and follicles were obtained at 0 hr post‐GnRH (preovulatory) or at 6, 12, 18, or 24 hr (periovulatory). ADAMTS1, ‐2, …


An Arginine Finger Regulates The Sequential Action Of Asymmetrical Hexameric Atpase In The Double-Stranded Dna Translocation Motor, Zhengyi Zhao, Gian Marco De-Donatis, Chad T. Schwartz, Huaming Fang, Jingyuan Li, Peixuan Guo Oct 2016

An Arginine Finger Regulates The Sequential Action Of Asymmetrical Hexameric Atpase In The Double-Stranded Dna Translocation Motor, Zhengyi Zhao, Gian Marco De-Donatis, Chad T. Schwartz, Huaming Fang, Jingyuan Li, Peixuan Guo

Pharmaceutical Sciences Faculty Publications

Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation …


Biological Nanomotors With A Revolution, Linear, Or Rotation Motion Mechanism, Peixuan Guo, Hiroyuki Noji, Christopher M. Yengo, Zhengyi Zhao, Ian Grainge Mar 2016

Biological Nanomotors With A Revolution, Linear, Or Rotation Motion Mechanism, Peixuan Guo, Hiroyuki Noji, Christopher M. Yengo, Zhengyi Zhao, Ian Grainge

Nanobiotechnology Center Faculty Publications

The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how …


Structures Of Eccb1 And Eccd1 From The Core Complex Of The Mycobacterial Esx-1 Type Vii Secretion System, Jonathan Mark Wagner, Sum Chan, Timothy J. Evans, Sara Kahng, Jennifer Kim, Mark A. Arbing, David Eisenberg, Konstantin V. Korotkov Feb 2016

Structures Of Eccb1 And Eccd1 From The Core Complex Of The Mycobacterial Esx-1 Type Vii Secretion System, Jonathan Mark Wagner, Sum Chan, Timothy J. Evans, Sara Kahng, Jennifer Kim, Mark A. Arbing, David Eisenberg, Konstantin V. Korotkov

Molecular and Cellular Biochemistry Faculty Publications

Background: The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system.

Results: This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB1 and EccD1. The periplasmic domain of EccB1 consists of 4 repeat domains and a central domain, which together form a quasi …


Analogous Cellular Contribution And Healing Mechanisms Following Digit Amputation And Phalangeal Fracture In Mice, Lindsay A. Dawson, Jennifer Simkin, Michelle Sauque, Maegan Pela, Teresa Palkowski, Ken Muneoka Feb 2016

Analogous Cellular Contribution And Healing Mechanisms Following Digit Amputation And Phalangeal Fracture In Mice, Lindsay A. Dawson, Jennifer Simkin, Michelle Sauque, Maegan Pela, Teresa Palkowski, Ken Muneoka

Biology Faculty Publications

Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration-incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone …