Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 1477

Full-Text Articles in Molecular Biology

Creating A Molecular Map Of The Pediatric Lung, Quinlen F. Marshall Sep 2019

Creating A Molecular Map Of The Pediatric Lung, Quinlen F. Marshall

Forum Lectures

The newborn lung undergoes vast biochemical and physiological changes during adaptation from the intrauterine to the extrauterine environment. Lung morphogenesis continues from birth into early childhood, mediated by dynamic gene expression and a diversity of pulmonary cell types that exhibit remarkable heterogeneity. (Whitsett, JA. et al. Physiol. Rev, 2019). Surprisingly, few studies have solely focused on human lung development during this critical period, and many current studies of lung maturation rely on adult, murine, or diseased samples, limiting their insights and applicability to longitudinal pediatric lung development. Understanding the molecular and physiological nuances of pulmonary development has important clinical relevance ...


Gene Pyramids And The Balancing Act Of Keeping Pests At Bay, Gustavo C. Macintosh Sep 2019

Gene Pyramids And The Balancing Act Of Keeping Pests At Bay, Gustavo C. Macintosh

Biochemistry, Biophysics and Molecular Biology Publications

Pyramiding R genes is a common strategy used by breeders to enhance resistance and increase durability of resistance in crops. However, the molecular mechanisms that mediate R gene interactions are not known. Kamphuis et al. (2019) analyzed Medicago truncatula plants carrying two genes that confer resistance to bluegreen aphids. They identified a potential phytohormone crosstalk triggered by the combined R gene action in response to aphid feeding that enhances resistance and minimizes R gene-associated fitness costs to the plant.


The Central Role Of The Tail In Switching Off 10s Myosin Ii Activity, Shixin Yang, Kyounghwan Lee, John L. Woodhead, Osamu Sato, Mitsuo Ikebe, Roger Craig Sep 2019

The Central Role Of The Tail In Switching Off 10s Myosin Ii Activity, Shixin Yang, Kyounghwan Lee, John L. Woodhead, Osamu Sato, Mitsuo Ikebe, Roger Craig

Radiology Publications and Presentations

Myosin II is a motor protein with two heads and an extended tail that plays an essential role in cell motility. Its active form is a polymer (myosin filament) that pulls on actin to generate motion. Its inactive form is a monomer with a compact structure (10S sedimentation coefficient), in which the tail is folded and the two heads interact with each other, inhibiting activity. This conformation is thought to function in cells as an energy-conserving form of the molecule suitable for storage as well as transport to sites of filament assembly. The mechanism of inhibition of the compact molecule ...


A Unified Encyclopedia Of Human Functional Dna Elements Through Fully Automated Annotation Of 164 Human Cell Types, Maxwell W. Libbrecht, Oscar L. Rodriguez, Zhiping Weng, Jeffrey A. Bilmes, Michael M. Hoffman, William Stafford Noble Aug 2019

A Unified Encyclopedia Of Human Functional Dna Elements Through Fully Automated Annotation Of 164 Human Cell Types, Maxwell W. Libbrecht, Oscar L. Rodriguez, Zhiping Weng, Jeffrey A. Bilmes, Michael M. Hoffman, William Stafford Noble

Open Access Articles

Semi-automated genome annotation methods such as Segway take as input a set of genome-wide measurements such as of histone modification or DNA accessibility and output an annotation of genomic activity in the target cell type. Here we present annotations of 164 human cell types using 1615 data sets. To produce these annotations, we automated the label interpretation step to produce a fully automated annotation strategy. Using these annotations, we developed a measure of the importance of each genomic position called the "conservation-associated activity score." We further combined all annotations into a single, cell type-agnostic encyclopedia that catalogs all human regulatory ...


Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo Aug 2019

Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo

Schiffer Lab Publications

The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of ...


Promotion Of Adipogenesis By Jmjd6 Requires The At Hook-Like Domain And Is Independent Of Its Catalytic Function, Pablo Reyes-Gutierrez, Jake W. Carrasquillo-Rodriguez, Anthony N. Imbalzano Aug 2019

Promotion Of Adipogenesis By Jmjd6 Requires The At Hook-Like Domain And Is Independent Of Its Catalytic Function, Pablo Reyes-Gutierrez, Jake W. Carrasquillo-Rodriguez, Anthony N. Imbalzano

Open Access Articles

JMJD6 is a member of the Jumonji C domain containing enzymes that demethylate and/or hydroxylate substrate proteins. It is a multi-functional protein that has been implicated in disparate aspects of transcriptional and post-transcriptional control of gene expression, including but not limited to enhancer and promoter binding, release of paused RNA polymerase II, control of splicing, and interaction with the translation machinery. JMJD6 contributes to multiple aspects of animal development, including adipogenesis modeled in culture. We mutated proposed or characterized domains in the JMJD6 protein to better understand the requirement for JMJD6 in adipogenic differentiation. Mutation of JMJD6 amino acids ...


Insulin Receptor Substrate-1 (Irs-1) And Irs-2 Expression Levels Are Associated With Prognosis In Non-Small Cell Lung Cancer (Nsclc), Andrew J. Piper, Jennifer L. Clark, Jose R. Mercado-Matos, Asia N. Matthew-Onabanjo, Chung-Cheng Hsieh, Ali Akalin, Leslie M. Shaw Aug 2019

Insulin Receptor Substrate-1 (Irs-1) And Irs-2 Expression Levels Are Associated With Prognosis In Non-Small Cell Lung Cancer (Nsclc), Andrew J. Piper, Jennifer L. Clark, Jose R. Mercado-Matos, Asia N. Matthew-Onabanjo, Chung-Cheng Hsieh, Ali Akalin, Leslie M. Shaw

Open Access Articles

The insulin-like growth factor-1 (IGF-1) signaling pathway has been implicated in non-small cell lung cancer (NSCLC) outcomes and resistance to targeted therapies. However, little is known regarding the molecular mechanisms by which this pathway contributes to the biology of NSCLC. The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor proteins that signal downstream of the IGF-1R and determine the functional outcomes of this signaling pathway. In this study, we assessed the expression patterns of IRS-1 and IRS-2 in NSCLC to identify associations between IRS-1 and IRS-2 expression levels and survival outcomes in the two major histological subtypes of NSCLC, adenocarcinoma ...


Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber Aug 2019

Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber

Chemistry Student Work

INTRODUCTION: The newborn lung undergoes vast biochemical and physiological changes during adaptation from the intrauterine to the extrauterine environment. Lung morphogenesis continues from birth into early childhood, mediated by dynamic gene expression and a diversity of pulmonary cell types (Whitsett, JA. et al. Physiol. Rev, 2019). Murine models demonstrate that pulmonary mesenchymal cells exhibit remarkable heterogeneity in function and morphology during development, however, confirmation of their role is lacking in human neonates and early childhood (Guo, M. et al. Nat. Comm, 2019). In addition, many current human genomic studies of lung maturation suffer from limited sample size, limiting their applicability ...


High-Fat Diet In A Mouse Insulin-Resistant Model Induces Widespread Rewiring Of The Phosphotyrosine Signaling Network, Antje Dittmann, Norman J. Kennedy, Nina L. Soltero, Nader Morshed, Miyeko D. Mana, Omer H. Yilmaz, Roger J. Davis, Forest M. White Aug 2019

High-Fat Diet In A Mouse Insulin-Resistant Model Induces Widespread Rewiring Of The Phosphotyrosine Signaling Network, Antje Dittmann, Norman J. Kennedy, Nina L. Soltero, Nader Morshed, Miyeko D. Mana, Omer H. Yilmaz, Roger J. Davis, Forest M. White

Open Access Articles

Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected ...


Nonnative Structure In A Peptide Model Of The Unfolded State Of Sod1: Implications For Als-Linked Aggregation, Noah R. Cohen, Jill A. Zitzewitz, Osman Bilsel, C. Robert Matthews Jul 2019

Nonnative Structure In A Peptide Model Of The Unfolded State Of Sod1: Implications For Als-Linked Aggregation, Noah R. Cohen, Jill A. Zitzewitz, Osman Bilsel, C. Robert Matthews

Open Access Articles

Dozens of mutations throughout the sequence of the gene encoding superoxide dismutase 1 (SOD1) have been linked to toxic protein aggregation in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). A parsimonious explanation for numerous genotypes resulting in a common phenotype would be mutation-induced perturbation of the folding free-energy surface that increases the populations of high-energy states prone to aggregation. The absence of intermediates in the folding of monomeric SOD1 suggests that the unfolded ensemble is a potential source of aggregation. To test this hypothesis, here we dissected SOD1 into a set of peptides end-labeled with FRET probes to model the ...


Rapid Irreversible Transcriptional Reprogramming In Human Stem Cells Accompanied By Discordance Between Replication Timing And Chromatin Compartment, Vishnu Dileep, Rachel Patton Mccord, Job Dekker, David M. Gilbert Jul 2019

Rapid Irreversible Transcriptional Reprogramming In Human Stem Cells Accompanied By Discordance Between Replication Timing And Chromatin Compartment, Vishnu Dileep, Rachel Patton Mccord, Job Dekker, David M. Gilbert

Open Access Articles

The temporal order of DNA replication is regulated during development and is highly correlated with gene expression, histone modifications and 3D genome architecture. We tracked changes in replication timing, gene expression, and chromatin conformation capture (Hi-C) A/B compartments over the first two cell cycles during differentiation of human embryonic stem cells to definitive endoderm. Remarkably, transcriptional programs were irreversibly reprogrammed within the first cell cycle and were largely but not universally coordinated with replication timing changes. Moreover, changes in A/B compartment and several histone modifications that normally correlate strongly with replication timing showed weak correlation during the early ...


Systems Approach Reveals Photosensitivity And Per2 Level As Determinants Of Clock-Modulator Efficacy, Dae Wook Kim, Cheng Chang, Xian Chen, Angela C. Doran, Francois Gaudreault, Travis Wager, George J. Demarco, Jae Kyoung Kim Jul 2019

Systems Approach Reveals Photosensitivity And Per2 Level As Determinants Of Clock-Modulator Efficacy, Dae Wook Kim, Cheng Chang, Xian Chen, Angela C. Doran, Francois Gaudreault, Travis Wager, George J. Demarco, Jae Kyoung Kim

Open Access Articles

In mammals, the master circadian clock synchronizes daily rhythms of physiology and behavior with the day-night cycle. Failure of synchrony, which increases the risk for numerous chronic diseases, can be treated by phase adjustment of the circadian clock pharmacologically, for example, with melatonin, or a CK1delta/epsilon inhibitor. Here, using in silico experiments with a systems pharmacology model describing molecular interactions, and pharmacokinetic and behavioral experiments in cynomolgus monkeys, we find that the circadian phase delay caused by CK1delta/epsilon inhibition is more strongly attenuated by light in diurnal monkeys and humans than in nocturnal mice, which are common preclinical ...


Molecular And Structural Mechanism Of Pan-Genotypic Hcv Ns3/4a Protease Inhibition By Glecaprevir, Jennifer Timm, Klajdi Kosovrasti, Mina Henes, Florian Leidner, Shurong Hou, Akbar Ali, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2019

Molecular And Structural Mechanism Of Pan-Genotypic Hcv Ns3/4a Protease Inhibition By Glecaprevir, Jennifer Timm, Klajdi Kosovrasti, Mina Henes, Florian Leidner, Shurong Hou, Akbar Ali, Nese Kurt Yilmaz, Celia A. Schiffer

University of Massachusetts Medical School Faculty Publications

Hepatitis C virus (HCV), causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals (DAAs) had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes ...


In Situ Structure Of Rotavirus Vp1 Rna-Dependent Rna Polymerase, Simon Jenni, Eric N. Salgado, Tobias Herrmann, Zongli Li, Timothy Grant, Nikolaus Grigorieff, Stefano Trapani, Leandro F. Estrozi, Stephen C. Harrison Jun 2019

In Situ Structure Of Rotavirus Vp1 Rna-Dependent Rna Polymerase, Simon Jenni, Eric N. Salgado, Tobias Herrmann, Zongli Li, Timothy Grant, Nikolaus Grigorieff, Stefano Trapani, Leandro F. Estrozi, Stephen C. Harrison

Open Access Articles

Rotaviruses, like other non-enveloped, double-strand RNA viruses, package an RNA-dependent RNA polymerase (RdRp) with each duplex of their segmented genomes. Rotavirus cell entry results in loss of an outer protein layer and delivery into the cytosol of an intact, inner capsid particle (the "double-layer particle," or DLP). The RdRp, designated VP1, is active inside the DLP; each VP1 achieves many rounds of mRNA transcription from its associated genome segment. Previous work has shown that one VP1 molecule lies close to each 5-fold axis of the icosahedrally symmetric DLP, just beneath the inner surface of its protein shell, embedded in tightly ...


A Chromosome Folding Intermediate At The Condensin-To-Cohesin Transition During Telophase, Kristin Abramo, Anne-Laure Valton, Sergey V. Venev, Hakan Ozadam, A. Nicole Fox, Job Dekker Jun 2019

A Chromosome Folding Intermediate At The Condensin-To-Cohesin Transition During Telophase, Kristin Abramo, Anne-Laure Valton, Sergey V. Venev, Hakan Ozadam, A. Nicole Fox, Job Dekker

University of Massachusetts Medical School Faculty Publications

Chromosome folding is extensively modulated as cells progress through the cell cycle. During mitosis, condensin complexes fold chromosomes in helically arranged nested loop arrays. In interphase, the cohesin complex generates loops that can be stalled at CTCF sites leading to positioned loops and topologically associating domains (TADs), while a separate process of compartmentalization drives the spatial segregation of active and inactive chromatin domains. We used synchronized cell cultures to determine how the mitotic chromosome conformation is transformed into the interphase state. Using Hi-C, chromatin binding assays, and immunofluorescence we show that by telophase condensin-mediated loops are lost and a transient ...


Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition In Cancer, Monserrat Olea-Flores, Miriam Daniela Zuniga-Eulogio, Miguel Angel Mendoza-Catalan, Hugo Alberto Rodriguez-Ruiz, Eduardo Castaneda-Saucedo, Carlos Ortuno-Pineda, Teresita Padilla-Benavides, Napoleon Navarro-Tito Jun 2019

Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition In Cancer, Monserrat Olea-Flores, Miriam Daniela Zuniga-Eulogio, Miguel Angel Mendoza-Catalan, Hugo Alberto Rodriguez-Ruiz, Eduardo Castaneda-Saucedo, Carlos Ortuno-Pineda, Teresita Padilla-Benavides, Napoleon Navarro-Tito

Open Access Articles

Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4 ...


Trim5alpha Restricts Flavivirus Replication By Targeting The Viral Protease For Proteasomal Degradation, Abhilash I. Chiramel, Nicholas R. Meyerson, Kristin L. Mcnally, Rebecca M. Broeckel, Vanessa R. Montoya, Omayra Mendez-Solis, Shelly J. Robertson, Gail L. Sturdevant, Kirk J. Lubick, Vinod Nair, Brian H. Youseff, Robin M. Ireland, Catharine M. Bosio, Kyusik Kim, Jeremy Luban, Vanessa M. Hirsch, R. Travis Taylor, Fadila Bouamr, Sara L. Sawyer, Sonja M. Best Jun 2019

Trim5alpha Restricts Flavivirus Replication By Targeting The Viral Protease For Proteasomal Degradation, Abhilash I. Chiramel, Nicholas R. Meyerson, Kristin L. Mcnally, Rebecca M. Broeckel, Vanessa R. Montoya, Omayra Mendez-Solis, Shelly J. Robertson, Gail L. Sturdevant, Kirk J. Lubick, Vinod Nair, Brian H. Youseff, Robin M. Ireland, Catharine M. Bosio, Kyusik Kim, Jeremy Luban, Vanessa M. Hirsch, R. Travis Taylor, Fadila Bouamr, Sara L. Sawyer, Sonja M. Best

Program in Molecular Medicine Publications and Presentations

Tripartite motif-containing protein 5alpha (TRIM5alpha) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5alpha is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5alpha suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5alpha-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5alpha suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and ...


Smooth Muscle Cell-Specific Tmem16a Deletion Does Not Alter Ca2+ Signaling, Uterine Contraction, Gestation Length Or Litter Size In Micedagger, Mingzi Qu, Ping Lu, Karl D. Bellve, Kevin E. Fogarty, Lawrence M. Lifshitz, Fangxiong Shi, Ronghua Zhuge Jun 2019

Smooth Muscle Cell-Specific Tmem16a Deletion Does Not Alter Ca2+ Signaling, Uterine Contraction, Gestation Length Or Litter Size In Micedagger, Mingzi Qu, Ping Lu, Karl D. Bellve, Kevin E. Fogarty, Lawrence M. Lifshitz, Fangxiong Shi, Ronghua Zhuge

Program in Molecular Medicine Publications and Presentations

Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance and parturition; thus identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found ...


Yeast Sirtuin Family Members Maintain Transcription Homeostasis To Ensure Genome Stability, Jessica L. Feldman, Craig L. Peterson Jun 2019

Yeast Sirtuin Family Members Maintain Transcription Homeostasis To Ensure Genome Stability, Jessica L. Feldman, Craig L. Peterson

Program in Molecular Medicine Publications and Presentations

The mammalian sirtuin, SIRT6, is a key tumor suppressor that maintains genome stability and regulates transcription, though how SIRT6 family members control genome stability is unclear. Here, we use multiple genome-wide approaches to demonstrate that the yeast SIRT6 homologs, Hst3 and Hst4, prevent genome instability by tuning levels of both coding and noncoding transcription. While nascent RNAs are elevated in the absence of Hst3 and Hst4, a global impact on steady-state mRNAs is masked by the nuclear exosome, indicating that sirtuins and the exosome provide two levels of regulation to maintain transcription homeostasis. We find that, in the absence of ...


Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier Jun 2019

Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier

Bioelectrics Publications

Nanosecond bipolar pulse cancellation, a recently discovered Phenomenon, is modulation of the effects of a unipolar electric pulse exposure by a second pulse of opposite polarity. This attenuation of biological response by reversal of the electric field direction has been reported with pulse durations from 60 ns to 900 ns for a wide range of endpoints, and it is not observed with conventional electroporation pulses of much longer duration (> 100 mu s) where pulses are additive regardless of polarity. The most plausible proposed mechanisms involve the field-driven migration of ions to and from the membrane interface (accelerated membrane discharge). Here ...


Genistein Has Antiviral Activity Against Herpes B Virus And Acts Synergistically With Antiviral Treatments To Reduce Effective Dose, Julia C. Lecher, Nga Diep, Peter W. Krug, Julia K. Hilliard May 2019

Genistein Has Antiviral Activity Against Herpes B Virus And Acts Synergistically With Antiviral Treatments To Reduce Effective Dose, Julia C. Lecher, Nga Diep, Peter W. Krug, Julia K. Hilliard

Faculty Publications

Herpes B virus is a deadly zoonotic agent that can be transmitted to humans from the macaque monkey, an animal widely used in biomedical research. Currently, there is no cure for human B virus infection and treatments require a life-long daily regimen of antivirals, namely acyclovir and ganciclovir. Long-term antiviral treatments have been associated with significant debilitating side effects, thus, there is an ongoing search for alternative efficacious antiviral treatment. In this study, the antiviral activity of genistein was quantified against B virus in a primary cell culture model system. Genistein prevented plaque formation of B virus and reduced virus ...


Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker May 2019

Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker

Lawrence University Honors Projects

Biomphalaria glabrata is the intermediate host to the disease causing parasitic worm, Schistosoma mansoni. Previous work has identified homologs of NF-κB, a known immune related transcription factor, in B. glabrata and work has also been done to establish putative κB sites. It has also been observed that the p65 homologous subunit has an extended N-terminal region not present in other homologs. The goal of the present study is twofold: investigate DNA binding affinity of two NF-κB subunits, Bg-p65 and Bg-p50, and characterize the nature of the N-terminal extension of Bg-p65. In the current work, it is shown through the use ...


An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. Mcshan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin May 2019

An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. Mcshan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin

Open Access Articles

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that ...


Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova May 2019

Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova

Open Access Articles

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in ...


Molecular Signatures Of Calpain 10 Isoforms Sequences, Envisage Functional Similarity And Therapeutic Potential, Bushra Chaudhry, Farina Hanif, Kausar Saboohi May 2019

Molecular Signatures Of Calpain 10 Isoforms Sequences, Envisage Functional Similarity And Therapeutic Potential, Bushra Chaudhry, Farina Hanif, Kausar Saboohi

Department of Biological & Biomedical Sciences

Calpain 10 plays a role in insulin secretion, action and susceptibility to type 2 diabetes. The mechanism through which it influences the insulin secretion and action is not completely defined. A structural bioinformatics approach is applied to envision its mechanism of action using available tools on NCBI (blastp and blastn), EMBL-EBI, Ensembl, Swiss Model Repository websites, I-TASSER, PROCHECK program and Discovery Studio software. Homology of domain I and II of calpain10 (isoform a) was established with super family cysteine proteinase domains (II a and II b, e=1.30e-77, 1.00e-20). Remaining sequences of domain III and T from (isoform ...


Arf Gtpases And Their Gefs And Gaps: Concepts And Challenges, Elizabeth Sztul, Pei-Wen Chen, James E. Casanova, Jacqueline Cherfils, Joel B. Dacks, David G. Lambright, Fang-Jen S. Lee, Paul A. Randazzo, Lorraine C. Santy, Annette Schurmann, Ilka Wilhelmi, Marielle E. Yohe, Richard A. Kahn May 2019

Arf Gtpases And Their Gefs And Gaps: Concepts And Challenges, Elizabeth Sztul, Pei-Wen Chen, James E. Casanova, Jacqueline Cherfils, Joel B. Dacks, David G. Lambright, Fang-Jen S. Lee, Paul A. Randazzo, Lorraine C. Santy, Annette Schurmann, Ilka Wilhelmi, Marielle E. Yohe, Richard A. Kahn

Program in Molecular Medicine Publications and Presentations

Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating ...


Brown Fat Organogenesis And Maintenance Requires Akt1 And Akt2, Joan Sanchez-Gurmaches, Camila Martinez Calejman, Su Myung Jung, Huawei Li, David A. Guertin May 2019

Brown Fat Organogenesis And Maintenance Requires Akt1 And Akt2, Joan Sanchez-Gurmaches, Camila Martinez Calejman, Su Myung Jung, Huawei Li, David A. Guertin

Open Access Articles

OBJECTIVE: Understanding the signaling mechanisms that control brown adipose tissue (BAT) development is relevant to understanding energy homeostasis and obesity. The AKT kinases are insulin effectors with critical in vivo functions in adipocytes; however, their role in adipocyte development remains poorly understood. The goal of this study was to investigate AKT function in BAT development.

METHODS: We conditionally deleted Akt1 and Akt2 either individually or together with Myf5-Cre, which targets early mesenchymal precursors that give rise to brown adipocytes. Because Myf5-Cre also targets skeletal muscle and some white adipocyte lineages, comparisons were made between AKT function in BAT versus white ...


Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman May 2019

Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman

Open Access Articles

Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-kappaB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.


Ouabain Enhances Cell-Cell Adhesion Mediated By Beta1 Subunits Of The Na(+),K(+)-Atpase In Cho Fibroblasts, Claudia Andrea Vilchis-Nestor, Maria Luisa Roldan, Angelina Leonardi, Juan G. Navea, Teresita Padilla-Benavides, Liora Shoshani Apr 2019

Ouabain Enhances Cell-Cell Adhesion Mediated By Beta1 Subunits Of The Na(+),K(+)-Atpase In Cho Fibroblasts, Claudia Andrea Vilchis-Nestor, Maria Luisa Roldan, Angelina Leonardi, Juan G. Navea, Teresita Padilla-Benavides, Liora Shoshani

Open Access Articles

Adhesion is a crucial characteristic of epithelial cells to form barriers to pathogens and toxic substances from the environment. Epithelial cells attach to each other using intercellular junctions on the lateral membrane, including tight and adherent junctions, as well as the Na(+),K(+)-ATPase. Our group has shown that non-adherent chinese hamster ovary (CHO) cells transfected with the canine beta1 subunit become adhesive, and those homotypic interactions amongst beta1 subunits of the Na(+),K(+)-ATPase occur between neighboring epithelial cells. Ouabain, a cardiotonic steroid, binds to the alpha subunit of the Na(+),K(+)-ATPase, inhibits the pump activity and induces ...


Exercise Rescues Gene Pathways Involved In Vascular Expansion And Promotes Functional Angiogenesis In Subcutaneous White Adipose Tissue, So Yun Min, Heather Learnard, Shashi Kant, Olga Gaelikman, Raziel Rojas-Rodriguez, Tiffany Desouza, Anand Desai, John F. Keaney Jr., Silvia Corvera, Siobhan M. Craige Apr 2019

Exercise Rescues Gene Pathways Involved In Vascular Expansion And Promotes Functional Angiogenesis In Subcutaneous White Adipose Tissue, So Yun Min, Heather Learnard, Shashi Kant, Olga Gaelikman, Raziel Rojas-Rodriguez, Tiffany Desouza, Anand Desai, John F. Keaney Jr., Silvia Corvera, Siobhan M. Craige

Open Access Articles

Exercise mitigates chronic diseases such as diabetes, cardiovascular diseases, and obesity; however, the molecular mechanisms governing protection from these diseases are not completely understood. Here we demonstrate that exercise rescues metabolically compromised high fat diet (HFD) fed mice, and reprograms subcutaneous white adipose tissue (scWAT). Using transcriptomic profiling, scWAT was analyzed for HFD gene expression changes that were rescued by exercise. Gene networks involved in vascularization were identified as prominent targets of exercise, which led us to investigate the vasculature architecture and endothelial phenotype. Vascular density in scWAT was found to be compromised in HFD, and exercise rescued this defect ...