Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 134

Full-Text Articles in Molecular Biology

Development Of Novel Methods To Study Host-Microbe Interactions In The Larval Zebrafish Gastrointestinal Tract, Anh K. Trinh Nguyen Dec 2023

Development Of Novel Methods To Study Host-Microbe Interactions In The Larval Zebrafish Gastrointestinal Tract, Anh K. Trinh Nguyen

Dissertations & Theses (Open Access)

The dynamic nature and inaccessible location of the intestine pose significant challenges to the study of intestinal physiology and pathology. Zebrafish larvae, possessing optical transparency and genetic tractability, offer an accessible and clinically relevant model for investigating dynamic events in the intestine via time-lapse imaging. In the first part of this work, I discuss our efforts to optimize the parameters of a foodborne infection assay using paramecia as a vehicle. This method provides an effective, high-throughput alternative to infection via immersion or oral gavage, and replicates the most common route of transmission of gastrointestinal (GI) infection in humans. The foodborne …


A Cancer-Specific Study On The Differentially Expressed Protein-Protein Interactions Of Fumarate Hydratase, Sydney Lac Dec 2023

A Cancer-Specific Study On The Differentially Expressed Protein-Protein Interactions Of Fumarate Hydratase, Sydney Lac

Dissertations & Theses (Open Access)

Fumarate hydratase (FH) is an enzyme used in the Krebs Cycle to convert fumarate to malate, and it is controlled by the FH gene. In this paper, we will investigate its role in Uterine Corpus Endometrial Carcinoma (UCEC) and how FH-deficient cells affect tumorigenesis. It is well-established that FH has been extensively studied in connection with renal cell carcinoma, skin and uterine leiomyomas, pheochromocytoma, and paraganglioma. However, we aim to construct an interaction network of significant genes related to the FH gene under conditions of FH deficiency in the Kreb Cycle. Creating an interactive network that illustrates the interconnectedness of …


Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Regulation And Function Of Zeb1 Acetylation In Lung Adenocarcinoma Progression And Metastasis, Mabel Perez-Oquendo May 2023

Regulation And Function Of Zeb1 Acetylation In Lung Adenocarcinoma Progression And Metastasis, Mabel Perez-Oquendo

Dissertations & Theses (Open Access)

Lung cancer metastasis is leading the causes of cancer-related mortality in the United States and worldwide. Epithelial-to-mesenchymal transition (EMT) is a model for metastasis that results in loss of specialized epithelial cell contacts and acquisition of mesenchymal invasive capacity. Zinc finger E-box-binding homeobox 1 (ZEB1) recognizes and binds to E-boxes of epithelial gene promoters to repress its transcription. ZEB1 has inconsistent molecular weights, which have been attributed to post-translational modifications (PTMs). In the presented dissertation, I specifically addressed the gap in the molecular mechanisms by which PTMs of ZEB1 regulate its ability to induce EMT and how its activity might …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Novel Regulators Of Cellular Secretion Alter The Tumor Microenvironment To Drive Metastasis, Rakhee Bajaj May 2022

Novel Regulators Of Cellular Secretion Alter The Tumor Microenvironment To Drive Metastasis, Rakhee Bajaj

Dissertations & Theses (Open Access)

Lung cancer is a highly aggressive disease responsible for ~25% of all cancer-related deaths, due in part to its proclivity to metastasize. Treating metastasis holds potential for improving patient survival but requires a deeper investigation into the underlying mechanisms. Some of these processes that can regulate metastasis are: (1) Oncogenic targets of epithelial micro-RNAs (miRNAs) are epigenetically de-repressed upon loss of the miRNAs during epithelial-to-mesenchymal transition (EMT) and in cancer. EMT confers plasticity and fitness to cancer cells promoting their survival through the metastatic cascade. This cascade and EMT are initiated by loss of the miRNA200 family (miR-200) and the …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …


Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van May 2022

Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van

Dissertations & Theses (Open Access)

Plant Homeodomain Finger Protein 20 (PHF20) and its homolog PHF20 Like 1 (PHF20L1) are known subunits of the Non-Specific Lethal (NSL) complex, which acetylates lysine residues on histone H4 and regulates gene expression. The current model assumes that PHF20 and PHF20L1 are present together in the NSL complex, although it has never been tested. Performing extensive biochemical analysis, we observed that PHF20 and PHF20L1 were exclusively and independently associated with the NSL complex. Our protein domain analysis showed that the C-termini of PHF20 and PHF20L1 are crucial for their interactions with the respective complexes. Furthermore, enrichment sites of PHF20 and …


Tissue-Specific Matrix Control Of Cell Cohesion And Migration Signaling Complexes, Tristen Tellman May 2022

Tissue-Specific Matrix Control Of Cell Cohesion And Migration Signaling Complexes, Tristen Tellman

Dissertations & Theses (Open Access)

The extracellular matrix (ECM) is a complex, interconnected network of three major constituents: collagens, glycoproteins, and proteoglycans, along with their enzyme modifiers. Within this network and beyond the structural role, each ECM molecule contributes a context-specific signal that influences cellular fate and behavior. Among these behaviors, cellular migration provides an essential function in developing tissues, wound healing, and cancer cell metastasis. Using two glandular organs, the normal salivary gland and the cancerous prostate, this dissertation describes the tissue-specific composition of two ECM signaling complexes (type I hemidesmosomes and the perlecan-semaphorin 3A-plexin A1-neuropilin-1 (PSPN) complex) and translates this knowledge into viable …


Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula Dec 2021

Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula

Dissertations & Theses (Open Access)

The metabolic vulnerability of cancers has long been envisaged as an attractive window to develop novel therapeutic strategies. Metabolic flexibility at the cellular level encompasses the efficient rerouting of anabolic and catabolic pathways in response to varying environmental stimuli to maintain cellular homeostasis and sustain proliferation. The primary objective of this study is to identify metabolic vulnerabilities bestowed by KEAP1/NRF2 signaling axis through SLC7A11. SLC7A11 is a transcriptional target of NRF2, an essential regulator of cellular anti-oxidant response. Under unstressed basal conditions, NRF2 interacts with KEAP1, a tumor suppressor gene and a substrate adaptor protein of the Cullin3-dependent ubiquitin ligase …


Modulation Of The Receptor Gating Mechanism And Allosteric Communication In Ionotropic Glutamate Receptors, Nabina Paudyal, Nabina Paudyal Dec 2021

Modulation Of The Receptor Gating Mechanism And Allosteric Communication In Ionotropic Glutamate Receptors, Nabina Paudyal, Nabina Paudyal

Dissertations & Theses (Open Access)

Ionotropic glutamate receptors (iGluRs) found in mammalian brain are primarily known to mediate excitatory synaptic transmission crucial for learning and memory formation. The family of iGluRs consists of AMPA receptors, NMDA receptors and kainate receptors with each member having distinct physiological role. In the recent years, significant progress has been made in understanding the biophysical, and functional properties of iGluRs. The development of Cryo-EM and X-Ray crystallography techniques have further facilitated in the structural understanding of these receptors. However, the multidomain nature, large size of the protein, complex gating mechanism and inadequate knowledge regarding the conformational dynamics of the receptors …


Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson Aug 2021

Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson

Dissertations & Theses (Open Access)

The human genome is under constant threat from sources of damage and stress. Improper resolution of DNA damage lesions can lead to mutations, oncogene activation, and genomic instability. Difficult-to-replicate-loci present barriers to DNA replication that, when not properly resolved, lead to replication fork stalling and collapse and genomic instability.

DNA damage and replication stress trigger signaling cascades potentiated by multiple types of post-translational modifications, including SUMOylation. Through proteomic analysis of proteins involved in SUMOylation following DNA damage, our lab identified an uncharacterized protein that we named New Player in SUMO-dependent DNA damage repair 4 (NPSD4). Through an additional proteomic screen, …


Understanding The Role Of Arglu1 In Interferon Signaling Activation In Breast Cancer, Phuoc Nguyen Aug 2021

Understanding The Role Of Arglu1 In Interferon Signaling Activation In Breast Cancer, Phuoc Nguyen

Dissertations & Theses (Open Access)

In the U.S., the highest number of new cancer cases belongs to breast cancer in women, and this cancer also bears the second-highest death rate in women. Despite significant progress in breast cancer treatment that has been made in the past several decades, innovative and efficient therapies are still needed to eradicate this deadly disease. Novel cancer immunotherapy with immune checkpoint blockade (ICB) could induce long-lasting responses and improve survival in hard-to-treat malignancies. Regrettably, only a fraction of breast cancer patients respond to this highly promising strategy. To improving ICB therapy in breast cancer treatment, IFN signaling induction is a …


Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen May 2021

Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen

Dissertations & Theses (Open Access)

Post-translational modifications (PTMs) drive signal transduction by interacting with "reader" proteins. Protein domain microarray is a high throughput platform to identify novel readers for PTMs. In this dissertation, I applied two protein domain microarrays identifying novel readers for histone H2Aub1 and H2Bub1, and H3TM K4me3. Ubiquitinations of histone H2A at K119 (H2Aub1) and histone H2B at K120 (H2Bub1) function in distinct transcription regulation and DNA damage repair pathways, likely mediated by specific "reader" proteins. There are only two H2Aub1-specific readers identified and no known H2Bub1-specific readers. Using a ubiquitin-binding domain microarray, I discovered the phospholipase A2-activating protein (PLAA) PFU domain …


Sine Oculis Homeobox Homolog 1 (Six1) Plays A Critical Role In The Progression Of Pulmonary Fibrosis., Cory Wilson Dec 2020

Sine Oculis Homeobox Homolog 1 (Six1) Plays A Critical Role In The Progression Of Pulmonary Fibrosis., Cory Wilson

Dissertations & Theses (Open Access)

Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonia with a median survival time of 2-4 years after diagnosis. The alarming mortality rate is due to the lack of effective treatments. IPF is a chronic disease that is characterized by alveolar destruction due to increasing extracellular matrix deposition that leads to poor lung compliance, impaired gas exchange, and ultimately respiratory failure. Repetitive alveolar epithelial injury is a central process to the underlying pathology with injury to the type II alveolar epithelial cells (AT2) specifically being a key player in the pathogenesis of IPF. Recent studies have shown that …


P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer Dec 2020

P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer

Dissertations & Theses (Open Access)

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene which encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 ChIP-sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes which included Mdm2 but not p21. Global p53 activation …


A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose Dec 2020

A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a very poor patient prognosis (5-year survival of ≤ 7%). While transcriptional profiling has aided in the classification of this disease into at least two broader subtypes, this alone has so far been insufficient to inform on more nuanced patterns of oncogenic dependency. We hypothesized that a more comprehensive and granular characterization of PDAC disease diversity is required to establish relevant context for targeted therapy. To this end, we sought to establish an integrated platform to: i) more comprehensively characterize differential oncogenic signaling across our tumor models, and ii) establish …


Ionic Mechanism Of Lysosomal Function And Cell Metabolism, Jian Xiong Dec 2020

Ionic Mechanism Of Lysosomal Function And Cell Metabolism, Jian Xiong

Dissertations & Theses (Open Access)

Two Pore Channels (TPCs) are endolysosomal ion channels that are permeable to sodium and calcium. Defects in TPCs have been implicated to impair vesicle trafficking, autophagy and cell metabolism control; however, the detailed mechanism remains largely unknown. In this study, I show that TPCs are critical for appropriate cargo delivery to the lysosomes and deletion of either TPC1 or TPC2 leads to delayed clearance of autophagosomes, resulting in enlarged lysosomes and accumulated contents inside the lysosomes. Cells with both TPC deleted also exhibit 50% reduction in lysosomal amino acids under normal culture conditions, leading to reduced homeostatic mTORC1 activation.

Glutamine …


Calcium Dyshomeostasis In Neurodegeneration, Nicholas Emanuel Karagas Dec 2020

Calcium Dyshomeostasis In Neurodegeneration, Nicholas Emanuel Karagas

Dissertations & Theses (Open Access)

Neurodegenerative diseases, despite constituting a major and growing cause of mortality globally, have few effective treatments. In order to develop novel therapeutics to combat neurodegeneration, a better understanding of the molecular mechanisms underlying these diseases is needed. Neurons rely on Ca2+ to mediate many of their unique functions, and aberrant Ca2+ signaling has been broadly implicated in neurodegeneration. The goal of this dissertation is to delineate specific examples of Ca2+ dyshomeostasis that I have uncovered in Drosophila models of neurodegeneration.

I first define the role a neurodegeneration-associated mutation plays in perturbing presynaptic [Ca2+], which is …


Investigating The Role Of Quaking In Antigen Uptake And Cross-Presentation By Dendritic Cells, Yating Li Aug 2020

Investigating The Role Of Quaking In Antigen Uptake And Cross-Presentation By Dendritic Cells, Yating Li

Dissertations & Theses (Open Access)

Dendritic cells (DCs) are considered the most potent antigen presenting cells (APC) due to their superior capability of cross-presenting exogenous antigens to CD8+ T cell for strong adaptive immune responses. They internalize foreign antigens by phagocytosis, endocytosis or macropinocytosis, which are then processed in endosomal compartments and loaded onto MHC Class I molecules. However, the molecular mechanisms regulating exogenous antigen uptake and cross-presentation by DCs are not fully understood.

In this study, we discovered that an RNA-binding protein, Quaking (QKI) plays a pivotal role in antigen uptake by DCs. Our previous studies in neural stem cells and microglia have …


Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon Aug 2020

Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon

Dissertations & Theses (Open Access)

Genetic engineering has been re-shaped by the invention of new tools in modern biotechnology in a way that offers precision and efficiency in modifying the genome at a single nucleotide level and/or allowing precise control of gene expression. Such gene manipulation brings about significant findings and revelations in comprehending more about embryonic development, cellular and physiological functions, and disease pathology. Current methods used to produce conditional knockouts have limitations on conditional allele placement and modification varies among genes in different organisms. Thus, a system for generating conditional alleles with fidelity remains a challenge. My goal was to examine an approach …


Elevated Cochlear Adenosine Causes Hearing Loss Via Adora2b Signaling, Jeanne Manalo Aug 2020

Elevated Cochlear Adenosine Causes Hearing Loss Via Adora2b Signaling, Jeanne Manalo

Dissertations & Theses (Open Access)

Over 538 million people in the world have been diagnosed with hearing loss (HL). Current treatments for the most common type of HL, sensorineural HL, are limited to hearing aids and cochlear implants with no FDA-drugs available. The hearing process demands an abundance of ATP and HL is often attributed to a disruption in this metabolic energy currency. Patients who lack adenosine deaminase (ADA), the enzyme that irreversibly metabolizes adenosine, have high levels of adenosine that yield severe health problems, including HL; however, the pathogenic mechanisms behind HL and adenosine remain elusive. Our lab has found a HL phenotype in …


Effects Of Penfluridol On Integrin-Fak Signaling And Tumor Cell Killing In Combination With Oncolytic Hsv In Glioblastoma, Mitra Nair May 2020

Effects Of Penfluridol On Integrin-Fak Signaling And Tumor Cell Killing In Combination With Oncolytic Hsv In Glioblastoma, Mitra Nair

Dissertations & Theses (Open Access)

Integrins are known to play an important role in activating multiple intracellular pathways, one of which is focal adhesion kinase (FAK). Phosphorylation of FAK can lead to the activation of various downstream signaling pathways that can increase tumor cell growth and proliferation, making it an ideal target for cancer therapeutics. Due to the fact that many FAK inhibitors are limited in their penetration of the blood brain barrier, we investigated the use of Penfluridol, an antipsychotic drug known to attenuate integrin expression at a transcriptional level, in combination with oncolytic herpes simplex I virus (oHSV) in a glioblastoma model. We …


Alternative Polyadenylation Modulates Expression Of Pro-Fibrotic Proteins And Contributes To Lung Fibrosis, Junsuk Ko May 2020

Alternative Polyadenylation Modulates Expression Of Pro-Fibrotic Proteins And Contributes To Lung Fibrosis, Junsuk Ko

Dissertations & Theses (Open Access)

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease which affects about 5 to 8 million individuals in the world. Despite the high prevalence, there is currently no cure for IPF, and the cause of this disease is still unclear. Our laboratory and collaborators have shown that nudix hydrolase 21 (NUDT21, which is also known as cleavage factor 25, CFIm25) is a key regulator of alternative polyadenylation (APA). NUDT21 depletion causes 3’UTR shortening via APA leading to enhanced mRNA stability and protein translation. This NUDT21 reduction promotes tumor growth in glioblastoma by enhancing expression of oncogenes. Cancer and IPF share …


Loss Of Caspase-8 Function In Combination With Smac Mimetic Treatment Sensitizes Head And Neck Squamous Carcinoma To Radiation Through Induction Of Necroptosis., Burak Uzunparmak May 2020

Loss Of Caspase-8 Function In Combination With Smac Mimetic Treatment Sensitizes Head And Neck Squamous Carcinoma To Radiation Through Induction Of Necroptosis., Burak Uzunparmak

Dissertations & Theses (Open Access)

Caspase-8 (CASP8) is one of the most frequently mutated genes in Head and Neck Squamous Carcinomas (HNSCC), and mutations of CASP8 are associated with poor overall survival. The distribution of these mutations in HNSCC suggests that they are likely to be inactivating. Inhibition of CASP8 has been reported to sensitize cancer cells to necroptosis, a unique cell death mechanism. Here, we evaluated how CASP8 regulates necroptosis in HSNCC using cell line models and syngeneic mouse xenografts. In vitro, knockdown of CASP8 rendered HNSCCs susceptible to necroptosis induced by a second mitochondria-derived activator of caspase (SMAC) mimetic, Birinapant, when combined …


The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer Dec 2019

The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer

Dissertations & Theses (Open Access)

The lipid and protein composition of the plasma membrane (PM) must be tightly controlled to maintain cellular functionality, despite constant, rapid endocytosis. Because de novo synthesis of proteins and lipids is energetically costly, the cell depends on active recycling to return endocytosed membrane components back to the PM. For most proteins, the mechanisms and pathways of their PM retention remain unknown. The work presented here shows that association with ordered membrane microdomains is fully sufficient for PM recycling and that abrogation of raft partitioning leads to their degradation in lysosomes. These findings support a model wherein ordered membrane domains mediate …


The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang Aug 2019

The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang

Dissertations & Theses (Open Access)

Protein turnover is one of the most essential mechanisms controlling circadian rhythms. F-Box and Leucine Rich Repeat Protein21 (FBXL21) is a circadian E3 ligase which shows oscillatory mRNA transcripts and protein levels. It was previously found to perform subcellular compartment-specific E3 ligase activities targeting the core clock proteins CRYPTOCHROME(CRY)1/2. Here we identified a new sarcomeric target substrate, Telethonin(TCAP), which also shows circadian oscillation in its mRNA transcript and protein expression and, importantly, interaction with FBXL21 in an anti-phasic manner. Via computational and pharmacological tests, we identified Glycogen Synthase Kinase-3β(GSK-3β) as a regulator of FBXL21. Biochemical and molecular characterizations demonstrated that …


Investigations Of The Structure-Function Relationship In Kainate Receptors Using FöRster Resonance Energy Transfer, Douglas Litwin Aug 2019

Investigations Of The Structure-Function Relationship In Kainate Receptors Using FöRster Resonance Energy Transfer, Douglas Litwin

Dissertations & Theses (Open Access)

Kainate receptors belong to the family of ion channels known as the ionotropic glutamate receptors. Ionotropic glutamate receptors mediate the majority of excitatory synaptic transmission, modulate the release of presynaptic glutamate, and facilitate dendrite formation. Kainate receptors are unique among the ionotropic glutamate receptors in being modulated by sodium ions. They have also been implicated in the development of higher learning and epilepsy. In recent years a wealth of structural data has become available for the AMPA and NMDA classes; however, the structural characterization of kainate receptors has been limited. The work in this dissertation utilizes luminescence resonance energy transfer …