Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Δnp63Α And Microrna: Leveraging The Epithelial-Mesenchymal Transition, Andrew J. Stacy, Michael P. Craig, Suraj Sakaram, Madhavi Kadakia Jan 2017

Δnp63Α And Microrna: Leveraging The Epithelial-Mesenchymal Transition, Andrew J. Stacy, Michael P. Craig, Suraj Sakaram, Madhavi Kadakia

Biochemistry and Molecular Biology Faculty Publications

The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ?Np63a, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ?Np63a is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ?Np63a as a master regulator of EMT …


Alignment Of Mitotic Chromosomes In Human Cells Involves Sr-Like Splicing Factors Btf And Trap150, Sapna Varia, Divya Cheedu, Michael P. Markey, Keshia Torres-Shafer, Vishnu P. Battini, Athanasios Bubulya, Paula A. Bubulya Jan 2017

Alignment Of Mitotic Chromosomes In Human Cells Involves Sr-Like Splicing Factors Btf And Trap150, Sapna Varia, Divya Cheedu, Michael P. Markey, Keshia Torres-Shafer, Vishnu P. Battini, Athanasios Bubulya, Paula A. Bubulya

Biochemistry and Molecular Biology Faculty Publications

Serine-arginine-rich (SR) or SR-like splicing factors interact with exon junction complex proteins during pre-mRNA processing to promote mRNA packaging into mature messenger ribonucleoproteins (mRNPs) and to dictate mRNA stability, nuclear export, and translation. The SR protein family is complex, and while many classical SR proteins have well-defined mRNA processing functions, those of other SR-like proteins is unclear. Here, we show that depletion of the homologous non-classical serine-arginine-rich (SR) splicing factors Bcl2-associated transcription factor (Btf or BCLAF) and thyroid hormone receptor-associated protein of 150 kDa (TRAP150) causes mitotic defects. We hypothesized that the depletion of these SR-like factors affects mitosis indirectly …