Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Molecular Biology

Tools For Biomolecular Modeling And Simulation, Xin Yang Apr 2024

Tools For Biomolecular Modeling And Simulation, Xin Yang

Mathematics Theses and Dissertations

Electrostatic interactions play a pivotal role in understanding biomolecular systems, influencing their structural stability and functional dynamics. The Poisson-Boltzmann (PB) equation, a prevalent implicit solvent model that treats the solvent as a continuum while describes the mobile ions using the Boltzmann distribution, has become a standard tool for detailed investigations into biomolecular electrostatics. There are two primary methodologies: grid-based finite difference or finite element methods and body-fitted boundary element methods. This dissertation focuses on developing fast and accurate PB solvers, leveraging both methodologies, to meet diverse scientific needs and overcome various obstacles in the field.


Deep Learning Image Analysis To Isolate And Characterize Different Stages Of S-Phase In Human Cells, Kevin A. Boyd, Rudranil Mitra, John Santerre, Christopher L. Sansam Dec 2023

Deep Learning Image Analysis To Isolate And Characterize Different Stages Of S-Phase In Human Cells, Kevin A. Boyd, Rudranil Mitra, John Santerre, Christopher L. Sansam

SMU Data Science Review

Abstract. This research used deep learning for image analysis by isolating and characterizing distinct DNA replication patterns in human cells. By leveraging high-resolution microscopy images of multiple cells stained with 5-Ethynyl-2′-deoxyuridine (EdU), a replication marker, this analysis utilized Convolutional Neural Networks (CNNs) to perform image segmentation and to provide robust and reliable classification results. First multiple cells in a field of focus were identified using a pretrained CNN called Cellpose. After identifying the location of each cell in the image a python script was created to crop out each cell into individual .tif files. After careful annotation, a CNN was …


Dissecting Interactions Across Gene Regulatory Layers In C. Elegans, Morgan Taylor Dec 2022

Dissecting Interactions Across Gene Regulatory Layers In C. Elegans, Morgan Taylor

Biological Sciences Theses and Dissertations

The nematode Caenorhabditis elegans is a powerful tool for studying nervous system genetics. Though relatively simple compared to mammals, C. elegans boasts a remarkably well-conserved neuronal genome and proteome, and its utility in the characterization of neuronal genes has been well-established. However, gene expression is often controlled by complex interactions between multiple genes, and teasing apart the functions of individual genes within such networks remains a challenge. Dissecting these interaction networks is crucial in determining the multifaceted functions of important, conserved regulatory genes. Here we explore interactions between gene regulatory layers in the C. elegans nervous system, employing a synthetic …


Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi May 2022

Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi

Biological Sciences Theses and Dissertations

Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, …


Peroxiredoxin 6 And Inflammation In Alzheimer's Disease, Jared Ferrell-Penniman Dec 2019

Peroxiredoxin 6 And Inflammation In Alzheimer's Disease, Jared Ferrell-Penniman

Biological Sciences Theses and Dissertations

Alzheimer’s disease (AD) is known for its debilitating symptoms and poor prognosis. However, despite intense research into neurodegenerative diseases, there are few therapies targeted at the underlying mechanisms of the disease. Oxidative stress (OS) and inflammation are cellular phenomena thought to be key to the progression of the disease. Critically, peroxiredoxin 6 (Prx6), an antioxidant protein with multiple functions, has been identified from mammalian studies as a potential regulator of both OS and inflammation that may have a specific effect on AD. This project seeks to elucidate the role of Prx6 in AD as well as the underlying mechanisms. Drosophila …


Recruitment Of Polycomb-Group Proteins At Giant In Drosophila Embryos, Elnaz Ghotbi Ravandi Dec 2019

Recruitment Of Polycomb-Group Proteins At Giant In Drosophila Embryos, Elnaz Ghotbi Ravandi

Biological Sciences Theses and Dissertations

Polycomb Group (PcG) proteins are evolutionarily conserved epigenetic transcriptional regulators that maintain the transcriptional repression of silenced genes. PcG mediated silencing is divided into two phases: initiation and maintenance. During the initiation phase, PcG proteins initially recognize and bind to their target genes. Once PcG proteins are recruited to their target genes, they can maintain transcriptional repression through an unlimited number of cell cycles. Most studies on PcG proteins have been focused on the maintenance phase of PcG silencing, and the molecular mechanisms by which PcG proteins are initially recruited to their target genes remained unknown. Two models have been …