Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Myod Synergizes With The E-Protein Heb Beta To Induce Myogenic Differentiation, Maura H. Parker, Robert L.S. Perry, Melanie C. Fauteux, Charlotte A. Berkes, Michael A. Rudnicki Aug 2006

Myod Synergizes With The E-Protein Heb Beta To Induce Myogenic Differentiation, Maura H. Parker, Robert L.S. Perry, Melanie C. Fauteux, Charlotte A. Berkes, Michael A. Rudnicki

Biology Faculty Publications

The MyoD family of basic helix-loop-helix transcription factors function as heterodimers with members of the E-protein family to induce myogenic gene activation. The E-protein HEB is alternatively spliced to generate alpha and beta isoforms. While the function of these molecules has been studied in other cell types, questions persist regarding the molecular functions of HEB proteins in skeletal muscle. Our data demonstrate that HEB alpha expression remains unchanged in both myoblasts and myotubes, whereas HEB beta is upregulated during the early phases of terminal differentiation. Upon induction of differentiation, a MyoD-HEB beta complex bound the E1 E-box of the myogenin …


Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano May 2005

Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano

Biology Faculty Publications

The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing …