Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Bioinformatics

Discipline
Institution
Publication Year
Publication

Articles 31 - 39 of 39

Full-Text Articles in Molecular Biology

Bioinformatics Indicates That Meiothermus Ruber Genes Mrub_1710 And Mrub_1712 Are Homologs Of The Escherichia Coli Genes B2903 (P-Protein; Glycine Dehydrogenase) And B2905 (T-Protein; Aminomethyltransferase), Respectively, Malory J. Groen, Dr. Lori Scott Feb 2016

Bioinformatics Indicates That Meiothermus Ruber Genes Mrub_1710 And Mrub_1712 Are Homologs Of The Escherichia Coli Genes B2903 (P-Protein; Glycine Dehydrogenase) And B2905 (T-Protein; Aminomethyltransferase), Respectively, Malory J. Groen, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1710 and Mrub_1712. We predict that Mrub_1710 encodes the enzyme glycine dehydrogenase (DNA coordinates 3046168.. 3049041 on the reverse strand), which is the first step of the glycine degradation pathway (KEGG map number 00260). It catalyzes the conversion of glycine to S-Amino-methyldihydro-lipoylprotein. The E. coli K12 MG1655 ortholog is predicted to be b2903, which has the gene identifier gcvP. …


E. Coli B3639 And B3634 Are Orthologs Of Mrub_2047 And Mrub_1372, Rong Zheng, Dr. Lori Scott Feb 2016

E. Coli B3639 And B3634 Are Orthologs Of Mrub_2047 And Mrub_1372, Rong Zheng, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2047 and Mrub_1372. We predict that Mrub_2047 encodes the enzyme fused 4'-phosphopantothenoylcysteine decarboxylase/phosphopantothenoylcysteine synthetase, FMN-binding (DNA coordinates 2083590..2084816 on the forward strand), which is the first and the second steps of the CoA biosynthesis pathway (KEGG map number 00770). It catalyzes the conversion of (R)-4’-phosphopantothenate to (R)-4’-phosphopantothenoyl-L-cysteine and the conversion of (R)-4’-phosphopantothenoyl-L-cysteine to 4’-phosphopantetheine. The E. coli K12 MG1655 ortholog …


Mrub_0258 Gene Is An Ortholog Of The B4226 Gene (Ppa) Found In Escherichia Coli; Mrub_1198 Gene Is An Ortholog Of The B2501 Gene (Ppk) Found In Escherichia Coli;, Brandon M. Wills, Dr. Lori Scott Feb 2016

Mrub_0258 Gene Is An Ortholog Of The B4226 Gene (Ppa) Found In Escherichia Coli; Mrub_1198 Gene Is An Ortholog Of The B2501 Gene (Ppk) Found In Escherichia Coli;, Brandon M. Wills, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_0258 and Mrub_1198. We predict that Mrub_0258 encodes the enzyme inorganic pyrophosphatase (226403..226942), which is indirectly involved with the oxidative phosphorylation pathway (KEGG map number 00190). It catalyzes the conversion of the diphosphate ions made by Mrub_1198 into two orthophosphate ions, which can then be used by ATP synthase to produce energy. The E. coli K12 MG1655 ortholog is predicted …


Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang Feb 2016

Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang

COBRA Preprint Series

Non-negative matrix factorization (NMF) is a widely used machine learning algorithm for dimension reduction of large-scale data. It has found successful applications in a variety of fields such as computational biology, neuroscience, natural language processing, information retrieval, image processing and speech recognition. In bioinformatics, for example, it has been used to extract patterns and profiles from genomic and text-mining data as well as in protein sequence and structure analysis. While the scientific performance of NMF is very promising in dealing with high dimensional data sets and complex data structures, its computational cost is high and sometimes could be critical for …


Bioinformatics Resources For Microrna Discovery, Alyssa C. Moore, Jonathan S. Winkjer, Tsai-Tien Tseng Jan 2016

Bioinformatics Resources For Microrna Discovery, Alyssa C. Moore, Jonathan S. Winkjer, Tsai-Tien Tseng

Faculty and Research Publications

Biomarker identification is often associated with the diagnosis and evaluation of various diseases. Recently, the role of microRNA (miRNA) has been implicated in the development of diseases, particularly cancer. With the advent of next-generation sequencing, the amount of data on miRNA has increased tremendously in the last decade, requiring new bioinformatics approaches for processing and storing new information. New strategies have been developed in mining these sequencing datasets to allow better understanding toward the actions of miRNAs. As a result, many databases have also been established to disseminate these findings. This review focuses on several curated databases of miRNAs and …


An Exploration Of The Phylogenetic Placement Of Recently Discovered Ultrasmall Archaeal Lineages, Jeffrey M. O'Brien Aug 2015

An Exploration Of The Phylogenetic Placement Of Recently Discovered Ultrasmall Archaeal Lineages, Jeffrey M. O'Brien

Honors Scholar Theses

In recent years, several new clades within the domain Achaea have been discovered. This is due in part to microbiological sampling of novel environments, and the increasing ability to detect and sequence uncultivable organisms through metagenomic analysis. These organisms share certain features, such as small cell size and streamlined genomes. Reduction in genome size can present difficulties to phylogenetic reconstruction programs. Since there is less genetic data to work with, these organisms often have missing genes in concatenated multiple sequence alignments. Evolutionary Biologists have not reached a consensus on the placement of these lineages in the archaeal evolutionary tree. There …


Numerical Assessment Of Sequence Conservation In Flu-Virus Hemagglutinin, Scott S. Norton May 2014

Numerical Assessment Of Sequence Conservation In Flu-Virus Hemagglutinin, Scott S. Norton

Honors Scholar Theses

The flu virus was investigated to find a common recognition domain to which an antibody against human-infected viruses can bind. If such a target site is structurally and electrostaticly conserved or invariant, only a single antibody would be required to attack the virus in all cases. The sequence of one of the viral surface proteins contains 24 amino acids that do not vary through mutation. However, these amino acids are neither contiguous in sequence or in space, and the ones that are associated with each other are not readily accessible to an antibody. They do provide a first impression of …


Disulfide By Design 2.0: A Web-Based Tool For Disulfide Engineering In Proteins, Douglas B. Craig, Alan A. Dombkowski Jan 2013

Disulfide By Design 2.0: A Web-Based Tool For Disulfide Engineering In Proteins, Douglas B. Craig, Alan A. Dombkowski

Wayne State University Associated BioMed Central Scholarship

Abstract

Background

Disulfide engineering is an important biotechnological tool that has advanced a wide range of research. The introduction of novel disulfide bonds into proteins has been used extensively to improve protein stability, modify functional characteristics, and to assist in the study of protein dynamics. Successful use of this technology is greatly enhanced by software that can predict pairs of residues that will likely form a disulfide bond if mutated to cysteines.

Results

We had previously developed and distributed software for this purpose: Disulfide by Design (DbD). The original DbD program has been widely used; however, it has a number …


A Proposed Syntax For Minimotif Semantics, Version 1., Jay Vyas, Ronald J. Nowling, Mark W. Maciejewski, Sanguthevar Rajasekaran, Michael R. Gryk, Martin R. Schiller Aug 2009

A Proposed Syntax For Minimotif Semantics, Version 1., Jay Vyas, Ronald J. Nowling, Mark W. Maciejewski, Sanguthevar Rajasekaran, Michael R. Gryk, Martin R. Schiller

Life Sciences Faculty Research

BACKGROUND:

One of the most important developments in bioinformatics over the past few decades has been the observation that short linear peptide sequences (minimotifs) mediate many classes of cellular functions such as protein-protein interactions, molecular trafficking and post-translational modifications. As both the creators and curators of a database which catalogues minimotifs, Minimotif Miner, the authors have a unique perspective on the commonalities of the many functional roles of minimotifs. There is an obvious usefulness in standardizing functional annotations both in allowing for the facile exchange of data between various bioinformatics resources, as well as the internal clustering of sets of …