Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Epidemiological Studies Of Soybean Vein Necrosis Virus And Potential Resistance Mechanisms To Its Vector Neohydatothrips Variabilis (Beach), Jing Zhou Dec 2018

Epidemiological Studies Of Soybean Vein Necrosis Virus And Potential Resistance Mechanisms To Its Vector Neohydatothrips Variabilis (Beach), Jing Zhou

Graduate Theses and Dissertations

Soybean (Glycine max (L.) Merrill) is one the most important crops in global agriculture with annual production of over 260 million metric tons. As the dependence of a growing global population to soybean has increased, so does the importance of soybean diseases and pests. Over 200 pathogens attack soybean; among them, viruses pose a major threat to the soybean industries accounting for approximately 10% of the annual yield reduction caused by diseases in the past two decades. Soybean vein necrosis virus (SVNV) is a relatively newly discovered virus causing the homonymous disease. The widespread occurrence of the disease in major …


Gmmyb176 Interactome And Regulation Of Isoflavonoid Biosynthesis In Soybean, Arun Kumaran Anguraj Vadivel Jun 2017

Gmmyb176 Interactome And Regulation Of Isoflavonoid Biosynthesis In Soybean, Arun Kumaran Anguraj Vadivel

Electronic Thesis and Dissertation Repository

MYB transcription factors are one of the largest transcription factor families characterized in plants. They are classified into four types: R1 MYB, R2R3 MYB, R3 MYB and R4 MYB. GmMYB176 is an R1MYB transcription factor that regulates Chalcone synthase (CHS8) gene expression and isoflavonoid biosynthesis in soybean. Silencing of GmMYB176 suppressed the expression of the GmCHS8 gene and reduced the accumulation of isoflavonoids in soybean hairy roots. However, overexpression of GmMYB176 does not alter either GmCHS8 gene expression or isoflavonoid levels suggesting that GmMYB176 alone is not sufficient for GmCHS8 gene regulation. I hypothesized that GmMYB176 acts cooperatively with another …


Regulation Of Arf16-2 By Microrna160 During Soybean Root Nodule Development, Spencer Schreier Jan 2017

Regulation Of Arf16-2 By Microrna160 During Soybean Root Nodule Development, Spencer Schreier

Electronic Theses and Dissertations

Soybean is an excellent candidate for sustainable agriculture due to its production of nutritious, versatile beans and the ability to form symbiotic organs called root nodules that perform nitrogen fixation. As demand for both yield and sustainable agriculture continue to increase, root nodules offer an attractive alternative to expensive and environmentally harmful nitrogen fertilizers. Understanding root nodule formation may open genetic engineering avenues for optimizing nitrogen fixation performance and transferring the nodule-formation ability to other plants. A major determinant of nodule numbers and quality in soybean is microRNA 160 (miR160), which dictates developmental stage-specific auxin sensitivity by targeting repressor auxin …


Planting The Chalcone Reductase Family Tree: Identification And Characterization Of Chalcone Reductase Genes In Soybean, Caroline Julia Sepiol Aug 2015

Planting The Chalcone Reductase Family Tree: Identification And Characterization Of Chalcone Reductase Genes In Soybean, Caroline Julia Sepiol

Electronic Thesis and Dissertation Repository

Soybean (Glycine max [L.] Merr) is an important crop grown in Canada, generating $2.4 billion in sales. Though this number may be promising, soybean farmers lose about $50 million worth of yield annually due to root and stem rot disease caused by Phytophthora sojae. Many strategies have been developed to combat the infection; however, these methods are prohibitively expensive. A ‘cost effective’ approach to this problem is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of root glyceollins. One of the key enzymes exclusively involved in glyceollin …


Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali Jul 2013

Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali

Electronic Thesis and Dissertation Repository

I identified members of the Cyclophilin (CYP) gene family in soybean (Glycine max) and characterized the GmCYP1, one of the members of soybean CYP. CYPs belong to the immunophilin superfamily with peptidyl-prolyl cis-trans isomerase (PPIase) activity. PPIase catalyzes the interconversion of the cis- and trans-rotamers of the peptidyl-prolyl amide bond of peptides. After extensive data mining, I identified 62 different CYP genes in soybean (GmCYP1 to GmCYP62), of which 8 are multi-domain proteins and 54 are single domain proteins. At least 25% of the GmCYP genes are expressed in soybean. GmCYP1 …