Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Plant Sciences

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 163

Full-Text Articles in Molecular Biology

Phenotypic And Transcriptomic Characterization Of Rice Snrk1 Mutants Developed By Crispr/Cas9 Mutagenesis, Maria Clara Faria Chaves Aug 2023

Phenotypic And Transcriptomic Characterization Of Rice Snrk1 Mutants Developed By Crispr/Cas9 Mutagenesis, Maria Clara Faria Chaves

Graduate Theses and Dissertations

SnRK1 is a heterotrimeric protein kinase that is composed of a catalytic subunit (α) and two regulatory subunits (β and βγ), and it has a main role in regulating energy homeostasis in the plant by modulating anabolic and catabolic process. SnRK1 phosphorylates and alters the activities of enzymes involved in metabolism and regulates gene expression by altering the activity of chromatin-remodeling enzymes or the transcription factors. Rice contains three functional paralogs of SnRK1α: SnRK1αa (LOC_Os03g17980), SnRK1αb (LOC_Os08g37800), and SnRK1αc (LOC_Os05g45420). This study focused on the function of these SnRK1 paralogs by evaluating the phenotypic and transcriptomic characteristics and the disease …


Bryophytes Of Goochland County, Virginia, Mikayla Quinn Apr 2023

Bryophytes Of Goochland County, Virginia, Mikayla Quinn

Honors Theses

Bryophytes are non-vascular land plants that include mosses, liverworts, and hornworts. Although easier to overlook because of their smaller size, bryophytes are a fundamental part of the ecosystem. As such, maintaining record of their biodiversity is important. Yet, records of bryophyte species in Goochland County, VA were low compared to more thoroughly documented counties such as Prince Edward County. This study expands the documentation of bryophyte flora and presents a checklist of bryophyte species found Virginia’s Goochland County from 2020-2023. Fieldwork conducted at public and privately-owned properties throughout the county between January 2020 and March 2023 yielded 702 specimens that …


Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero Apr 2023

Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero

Doctoral Dissertations

Nitrogen is essential for plant tissue growth but is often a limited resource in soils. Many legumes overcome this limitation by entering a symbiotic association with soil microbes, called rhizobia, which provide nitrogen to the plant while rhizobia receive fixed carbon. To successfully form a symbiosis, the host and symbiont exchange a series of molecular signals. One major obstacle during this interaction is the host's innate immune system, which becomes active upon rhizobial detection. It is therefore the main focus of this thesis to identify the mechanisms that modulate host immunity. In the subsequent chapters, we focus on a rhizobial …


Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty Jan 2023

Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty

Dartmouth College Ph.D Dissertations

Cilia are structures present on most eukaryotic cells which provide important signaling and motile components to cells from early development to fully differentiated and matured cells. Regulation of these structures is critical to proper functioning of the cell and is known to be tied to the cell cycle. Preparation for ciliary assembly following cell cycle exit and ciliary disassembly following cell cycle reentry requires components throughout the cell body and within the cilium to facilitate this process. Here I identify how the cell adapts to ensure modifications to cilia occur for assembly or disassembly using the model organism Chlamydomonas reinhardtii. …


Of Transcription Factor And Transformation: Elucidating Gene Function In The Common Ice Plant, Mesembryanthemum Crystallinum, Chinenye Lilian Izuegbunam Jan 2023

Of Transcription Factor And Transformation: Elucidating Gene Function In The Common Ice Plant, Mesembryanthemum Crystallinum, Chinenye Lilian Izuegbunam

Dissertations and Theses

Abiotic stresses negatively affect plant growth and development across the globe, which also affect the production of food, feed, biofuel, and fiber to meet the demands of a growing population. Thus, developing novel strategies to increase abiotic stress tolerance in crops is necessary. One of these strategies is exploring transcription factors (TFs) in Crassulacean Acid Metabolism (CAM) plants to improve plant abiotic stress tolerances. Therefore, the first objective of this dissertation determine the abiotic stress tolerance function of a CAM TF, McHB7opt in Arabidopsis. This study found that McHB7opt increased stress-responsive pathways related to seed germination and early seedling development. …


Csi Botany: Dna Barcode “Fingerprints” Identify Cryptic Urban Flora, Luis R. Vega Jan 2023

Csi Botany: Dna Barcode “Fingerprints” Identify Cryptic Urban Flora, Luis R. Vega

Theses

As short genomic markers, DNA barcodes can play a role in conservation by identifying cryptic species and hybrids when morphological approaches fall short. Here we present our application of barcodes to the identities of two wetland taxa as part of an ongoing floristic inventory of Van Cortlandt Park (VCP), Bronx, NY. Previous barcode data by Marriott et al. (2018) identified the VCP lake water lily as the exotic Nymphaea alba, rather than the native N. odorata as historically described. In addition, cattails in the park were historically identified as the native Typha latifolia and the exotic T. angustifolia …


Utilizing Rnai Technology To Develop Novel Agricultural Pesticides, Ethan B. Zand Aug 2022

Utilizing Rnai Technology To Develop Novel Agricultural Pesticides, Ethan B. Zand

Undergraduate Student Research Internships Conference

A general description of why RNAi based pesticide technology is a breakthrough technology able to target only pests while not harming others. This presentation gives a summary of RNAi technology, the current drawbacks of conventional pesticides, and our research on how RNAi can be used against the two-spotted spidermite; a polyphagic pest that causes significant financial damage to Canadian and worldwide agriculture


Comparative Genomics And Virulence Studies Of Streptomyces Soil Rot And Scab Pathogen Species, Natasha Soares Aug 2022

Comparative Genomics And Virulence Studies Of Streptomyces Soil Rot And Scab Pathogen Species, Natasha Soares

LSU Doctoral Dissertations

Comparative genomic analyses were performed to gain insights into the organization and content of the genome of Streptomyces ipomoeae, the soil rot pathogen that infects sweetpotatoes. Unlike Streptomyces scab pathogens, the thaxtomin phytotoxin gene cluster (txt) in S. ipomoeae does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased usage of the rare TTA codon, particularly for the txt cluster, suggests greater translational control by the bldA tRNA in S. ipomoeae. Orthologous gene searches and secondary metabolite profiling yielded ortholog groups and metabolite gene clusters that were exclusive …


Determination Of The Functional Role Of Rab-Ggt In Physcomitrium Patens., Hyun Jin Jung Aug 2022

Determination Of The Functional Role Of Rab-Ggt In Physcomitrium Patens., Hyun Jin Jung

Electronic Theses and Dissertations

Protein prenylation, a common lipid post-translational modification, is required for growth and development in eukaryotes. Rab geranylgeranylation involves the addition of one or two 20-carbon geranylgeranyl moieties to Rab-GTPase target proteins, which regulate intracellular vesicle trafficking. The reaction is carried out by heterodimeric Rab geranylgeranyltransferase (Rab-GGT), which is composed of two associated α- and β-subunits, with the assistance of an additional protein called Rab escort protein (REP). Loss of function of the Rab-GGT α subunit RGTA1 has not been reported in any plant. While knockout of either of the two β subunits RGTB1 or RGTB2 results in …


The Importance Of Co2 Recapture In The Co2 Concentrating Mechanism Of Chlamydomonas Reinhardtii, Ashwani Rai Jul 2022

The Importance Of Co2 Recapture In The Co2 Concentrating Mechanism Of Chlamydomonas Reinhardtii, Ashwani Rai

LSU Doctoral Dissertations

The aim of this thesis is to investigate the CO2 concentrating mechanism (CCM) of Chlamydomonas reinhardtii and to develop a quick method for estimating the activity of carbonic anhydrases (CAs). The first project demonstrates that there are two almost identical mitochondrial CAs in C. reinhardtii, CAH4 and CAH5, that help to maintain photosynthesis and minimize the leak of CO2 generated by respiration and photorespiration. We used an RNAi approach to reduce the expression of CAH4 and CAH5 so that their physiological functions could be studied. RNAi mutants with low expression of CAH4 and CAH5 have impaired rates …


Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Nodulin 26 Like Intrinsic Proteins: Structurally Similar Membrane Channels With Diverse Functions In Plant Hypoxia Stress, Metalloid Nutrition & Toxicity, Zachary Beamer May 2022

Nodulin 26 Like Intrinsic Proteins: Structurally Similar Membrane Channels With Diverse Functions In Plant Hypoxia Stress, Metalloid Nutrition & Toxicity, Zachary Beamer

Doctoral Dissertations

Plant nodulin 26 intrinsic proteins are categorized into three groups (NIP I, II, and III) based on pore architecture. NIP II and III participate in metalloid nutrition, whilst the function of a third (NIP I) is less understood. Here we investigate the physiological function of one NIP I protein (Arabidopsis thaliana NIP2;1) as a lactic acid channel, and also explore the structural basis for metalloid and water permeability of NIP I and NIP II proteins in general. In addition, a strategy was developed for the purification and crystallization of soybean nodulin 26 as a step towards structure determination of a …


Microbial Diversity And Community Structure In Sediments Associated With The Seagrass (Thallassia Testudinum) In Apalachicola Bay, Florida, Rahma Ahmed, Thomas Mcelroy, Troy Mutchler Apr 2022

Microbial Diversity And Community Structure In Sediments Associated With The Seagrass (Thallassia Testudinum) In Apalachicola Bay, Florida, Rahma Ahmed, Thomas Mcelroy, Troy Mutchler

Symposium of Student Scholars

Seagrass is an angiosperm which provides many ecosystem services in coastal areas, such as providing food, shelter and nurseries for many species, and decreasing the impact of waves on shorelines. A global assessment reported that 29% of known seagrass meadows are in a state of decline due to the effects of human activity. Seagrass is commonly found in shallow marine waters where they form meadows containing a microbiome that plays an important role in providing nutrients for seagrass growth, though little is known about the microorganisms within the seagrass meadow sediments. Our project collected sediments from seagrass meadows and adjacent …


Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage Mar 2022

Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage

Masters Theses

Clarireedia spp. (formerly Sclerotinia homoeocarpaF.T. Bennett) is the causal agent dollar spot, the most economically important turfgrass disease impacting golf courses in North America. The most effective strategy for dollar spot control is repeated application of multiple classes of fungicides. However, reliance on chemical application has led to resistance to four classes of fungicides as well as multidrug resistance (MDR). Fungi are known to detoxify xenobiotics, like fungicides, through transcriptional regulation of three detoxification phases: modification, conjugation and secretion. Little is known, however, of the protein-protein interactions that facilitate these pathways. Following next-generation RNA sequencing of Clarireedia spp., a …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Plants, Pipettes And Pcr, Elizabeth Vierling Jan 2022

Plants, Pipettes And Pcr, Elizabeth Vierling

Science and Engineering Saturday Seminars

Plants are amazing organisms that provide us with food, building materials, the pleasure of gardens, as well as providing the foundation of critical world ecosystems. Although they may look like they are just stuck in one place and doing not more than growing, they have many, many complex ways in which they respond to the environment. The goal of this STEM Ed session will be to discuss ways that plants can respond to the environment with hands on exercises and exploration of possible classroom activities. Participants will engage in state-of-the art methods of testing plant DNA composition using the polymerase …


The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull Jan 2022

The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull

Theses and Dissertations--Plant and Soil Sciences

Secondary metabolites are a broad class of specialized compounds that mediate plant-environment interactions and mitigate stress. It is increasingly clear that many phenylalanine-derived secondary metabolites are nearly indispensable for plant survival and that plants adjust their growth according to their secondary metabolic outputs. Consequently, many phenylalanine-derived secondary metabolites have influence over hormone activity. For instance, multiple phenylpropanoid intermediates and catecholamines alter the sensitivity of plants to the central hormone auxin, which in concert with cytokinin directs most aspects of plant growth and development. This dissertation reviews previous research on the influence of phenylpropanoid intermediates and catecholamines on plants, with a …


Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith Jan 2022

Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith

Graduate Theses, Dissertations, and Problem Reports

Plants are some of the most diverse organisms on earth, consisting of more than 350,000 different species. To understand the underlying processes that contributed to plant diversification, it is fundamental to identify the genetic and genomic components that facilitated various adaptations over evolutionary history. Most studies to date have focused on the underlying controls of above-ground traits such as grain and vegetation; however, little is known about the “hidden half” of plants. Root systems comprise half of the total plant structure and provide vital functions such as anchorage, resource acquisition, and storage of energy reserves. The execution of these key …


Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field Dec 2021

Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field

Doctoral Dissertations

In response to the energy crisis resulting from submergence stress and hypoxia, the model plant Arabidopsis thaliana limits non-essential mRNA translation, and accumulates cytosolic stress granules. Stress granules are phase-separated mRNA-protein particles that partition transcripts for various fates: storage, degradation, or return to translation after stress alleviation. Another response by the plant cell to low oxygen stress is the induction of the turnover pathway autophagy. Stress granule regulation by autophagy occurs by a ‘granulophagy’ pathway in yeast and mammalian systems through which parts or whole stress granules are degraded. Whether this occurs in plants has not been investigated.

A connection …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde Oct 2021

Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde

Biology Faculty Publications

In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and …


Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman Sep 2021

Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman

Undergraduate Research Symposium

Auxins are important hormones in plants that regulate growth and development. Disruptions in the auxin biosynthesis pathway result in morphological changes in phenotypes in the model plant Arabidopsis thaliana, including differences in root and leaf formation. Mutations in the Tryptophan Aminotransferase of Arabidopsis (TAA1) and YUCCA (YUC4) genes interfere with the plant's ability to synthesize Indole-3-acetic acid (IAA), the primary auxin involved in plant development. IBR1 and IBR3 act in the multistep conversion of indole-3-butyric acid (IBA) to IAA. ILL2, IAR3, and ILR1 hydrolyze IAA-amino acid conjugates into free IAA. The goal of …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


Resistance Screening And Association Mapping For Resistance To The Downy Mildew Pathogen Of Spinach, Dotun Olaoye May 2021

Resistance Screening And Association Mapping For Resistance To The Downy Mildew Pathogen Of Spinach, Dotun Olaoye

Graduate Theses and Dissertations

Spinach is an important cool leafy vegetable cultivated around the world, with large scale production in California and Arizona in the U.S. Spinach is a highly nutritious vegetable beneficial in the human diet. Spinach is affected by a number of biotic stressors. Downy mildew, caused by the oomycete pathogen Peronospora effusa, is a major threat to spinach as it affects the leaf quality and impacts the economic value of spinach. Several efforts have led to the development of resistant genotypes/cultivars to this pathogen. However, few studies have examined the genetics of resistance to the downy mildew pathogen in detail. This …


Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner Mar 2021

Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner

Publications and Research

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two bluelight- sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made …


Assessing Stress Tolerance Of Organelle Small Heat Shock Protein Mutants In Arabidopsis Thaliana, Parth Patel Dec 2020

Assessing Stress Tolerance Of Organelle Small Heat Shock Protein Mutants In Arabidopsis Thaliana, Parth Patel

Masters Theses

Molecular chaperones are proteins found in virtually every organism and are essential to cell survival. When plants are heat stressed, they upregulate and downregulate multiple genes, many of which are associated with the heat shock response. Small heat shock proteins (sHSPs) are one class of molecular chaperones that are upregulated during heat shock. They are proposed to act as the first line of defense by binding to heat sensitive proteins and preventing their irreversible aggregation. However, many details of sHSP function remain to be discovered and exactly what proteins they protect is unresolved. In addition to cytosolic sHSPs found in …


Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao Dec 2020

Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao

Doctoral Dissertations

Tropical forests, relative to other terrestrial ecosystems, exchange the largest amount of carbon with the atmosphere and also constitute a significant carbon sink. However, nutrient limitation, particularly of phosphorus (P), could limit growth of tropical forests and their function with the global carbon cycle. Thus, understanding root mechanisms to acquire P is necessary to representing the P cycle and corresponding interactions with plant growth. A large portion of total soil P in tropical forests occurs in organic forms, only accessible through root and microbial production of phosphatase enzymes. These phosphatase enzymes mineralize organic P into orthophosphate, the form of P …


Molecular Genetic Analysis Of Drought Resistance And Productivity Traits Of Rice Genotypes, Yheni Dwiningsih Dec 2020

Molecular Genetic Analysis Of Drought Resistance And Productivity Traits Of Rice Genotypes, Yheni Dwiningsih

Graduate Theses and Dissertations

Rice (Oryza sativa L.) is the staple food for a majority of the world’s population, and uses 30% of the global fresh water during its life cycle. Drought at the reproductive stage is the most important abiotic stress factor limiting grain yield. The United States is the third largest exporter of rice, and Arkansas is the top rice-producing state. The Arkansas rice-growing region in the Lower Mississippi belt is among the 10 areas with the highest risk of water scarcity. Adapted U.S. rice cultivars were screened for drought resistant (DR) traits to find sources for breeding U.S. rice cultivars for …


Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich Oct 2020

Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich

Electronic Thesis and Dissertation Repository

Stone fruits are a valuable crop grown worldwide, however pathogens such as viruses threaten fruit production by reducing tree health and fruit yield. In an orchard within the Niagara region of Ontario, symptoms typical of viral infection such as chlorosis and leaf deformation were seen on sweet cherry (Prunus avium L.) trees. Next generation sequencing was performed on symptomatic and asymptomatic leaves and four viruses were identified. On the tree displaying the most severe symptoms, Prune dwarf virus (PDV), was the only virus detected. A survey conducted during this work showed 42% of cherry trees on a single …


Needles In A Haystack Of Protein Diversity: Interrogation Of Complex Biological Samples Through Specialized Strategies In Bottom-Up Proteomics Uncover Peptides Of Interest For Diverse Applications, Manuel I. Villalobos Solis Aug 2020

Needles In A Haystack Of Protein Diversity: Interrogation Of Complex Biological Samples Through Specialized Strategies In Bottom-Up Proteomics Uncover Peptides Of Interest For Diverse Applications, Manuel I. Villalobos Solis

Doctoral Dissertations

Peptide identification is at the core of bottom-up proteomics measurements. However, even with state-of the-art mass spectrometric instrumentation, peptide level information is still lost or missing in these types of experiments. Reasons behind missing peptide identifications in bottom-up proteomics include variable peptide ionization efficiencies, ion suppression effects, as well as the occurrence of chimeric spectra that can lower the efficacy of database search strategies. Peptides derived from naturally abundant proteins in a biological system also have better chances of being identified in comparison to the ones produced from less abundant proteins, at least in regular discovery-based proteomics experiments. This dissertation …